Department of Cell and Systems Biology
Permanent URI for this communityhttps://hdl.handle.net/1807/72412
The molecular biology revolution has given us the unprecedented ability to explore fundamental mechanisms that govern life. Researchers in the Department of Cell & Systems Biology work to understand these mechanisms at all levels of biological organization using a wide array of state-of-the-art molecular, genomic, proteomic, cell biological, imaging, physiological and computational tools and methods.
Browse
Browsing Department of Cell and Systems Biology by Title
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Comparative sequence analyses of rhodopsin and RPE65 reveal patterns of selective constraint across hereditary retinal disease mutations(Cambridge University Press, 2016) Hauser, Frances E; Schott, Ryan K; Castiglione, Gianni M; Van Nynatten, Alexander; Kosyakov, Alexander; Tang, Portia L; Gow, Daniel A; Chang, Belinda S WRetinitis pigmentosa (RP) comprises several heritable diseases that involve photoreceptor, and ultimately retinal, degeneration. Currently, mutations in over 50 genes have known links to RP. Despite advances in clinical characterization, molecular characterization of RP remains challenging due to the heterogeneous nature of causal genes, mutations, and clinical phenotypes. In this study, we compiled large datasets of two important visual genes associated with RP: rhodopsin, which initiates the phototransduction cascade, and the retinoid isomerase RPE65, which regenerates the visual cycle. We used a comparative evolutionary approach to investigate the relationship between interspecific sequence variation and pathogenic mutations that lead to degenerative retinal disease. Using codon-based likelihood methods, we estimated evolutionary rates (d N/d S) across both genes in a phylogenetic context to investigate differences between pathogenic and nonpathogenic amino acid sites. In both genes, disease-associated sites showed significantly lower evolutionary rates compared to nondisease sites, and were more likely to occur in functionally critical areas of the proteins. The nature of the dataset (e.g., vertebrate or mammalian sequences), as well as selection of pathogenic sites, affected the differences observed between pathogenic and nonpathogenic sites. Our results illustrate that these methods can serve as an intermediate step in understanding protein structure and function in a clinical context, particularly in predicting the relative pathogenicity (i.e., functional impact) of point mutations and their downstream phenotypic effects. Extensions of this approach may also contribute to current methods for predicting the deleterious effects of candidate mutations and to the identification of protein regions under strong constraint where we expect pathogenic mutations to occur.Item Insights from the Structure of a Plant Cellulose Synthase Trimer(2021-01) Ramírez-Rodríguez, Eduardo Antonio; McFarlane, Heather ECellulose is an essential component of plant cell walls and the most abundant biopolymer on Earth. Despite its chemical simplicity, questions remain regarding the mechanisms of cellulose synthesis. A cryo-electron microscopy structure of a simplified plant cellulose synthase enzyme complex provides new insights into assembly, localization, and regulation of this complex.Item A kainate receptor subunit promotes the recycling of the neuron-specific K(+)-Cl(-) co-transporter KCC2 in hippocampal neurons(American Society for Biochemistry and Molecular Biology, 2017) Pressey, Jessica C.; Mahadevan, Vivek; Khademullah, C. Sahara; Dargaei, Zahra; Chevrier, Jonah; Ye, Wenqing; Huang, Michelle; Chauhan, Alamjeet K.; Meas, Steven J.; Uvarov, Pavel; Airaksinen, Matti S.; Woodin, Melanie A.Synaptic inhibition depends on a transmembrane gradient of chloride, which is set by the neuron-specific K(+)-Cl(-) co-transporter KCC2. Reduced KCC2 levels in the neuronal membrane contribute to the generation of epilepsy, neuropathic pain, and autism spectrum disorders; thus, it is important to characterize the mechanisms regulating KCC2 expression. In the present study, we determined the role of KCC2-protein interactions in regulating total and surface membrane KCC2 expression. Using quantitative immunofluorescence in cultured mouse hippocampal neurons, we discovered that the kainate receptor subunit GluK2 and the auxiliary subunit Neto2 significantly increase the total KCC2 abundance in neurons but that GluK2 exclusively increases the abundance of KCC2 in the surface membrane. Using a live cell imaging assay, we further determined that KCC2 recycling primarily occurs within 1-2 h and that GluK2 produces an ∼40% increase in the amount of KCC2 recycled to the membrane during this time period. This GluK2-mediated increase in surface recycling translated to a significant increase in KCC2 expression in the surface membrane. Moreover, we found that KCC2 recycling is enhanced by protein kinase C-mediated phosphorylation of the GluK2 C-terminal residues Ser-846 and Ser-868. Lastly, using gramicidin-perforated patch clamp recordings, we found that the GluK2-mediated increase in KCC2 recycling to the surface membrane translates to a hyperpolarization of the reversal potential for GABA (EGABA). In conclusion, our results have revealed a mechanism by which kainate receptors regulate KCC2 expression in the hippocampus.Item A novel rhodopsin-like gene expressed in zebrafish retina(Cambridge University Press, 2011-07) Morrow, James M; Lazic, Savo; Chang, Belinda S WThe visual pigment rhodopsin (rh1) constitutes the first step in the sensory transduction cascade in the rod photoreceptors of the vertebrate eye, forming the basis of vision at low light levels. In most vertebrates, rhodopsin is a single-copy gene whose function in rod photoreceptors is highly conserved. We found evidence for a second rhodopsin-like gene (rh1-2) in the zebrafish genome. This novel gene was not the product of a zebrafish-specific gene duplication event and contains a number of unique amino acid substitutions. Despite these differences, expression of rh1-2 in vitro yielded a protein that not only bound chromophore, producing an absorption spectrum in the visible range (λmax ≈ 500 nm), but also activated in response to light. Unlike rh1, rh1-2 is not expressed during the first 4 days of embryonic development; it is expressed in the retina of adult fish but not the brain or muscle. Similar rh1-2 sequences were found in two other Danio species, as well as a more distantly related cyprinid, Epalzeorhynchos bicolor. While sequences were only identified in cyprinid fish, phylogenetic analyses suggest an older origin for this gene family. Our study suggests that rh1-2 is a functional opsin gene that is expressed in the retina later in development. The discovery of a new previously uncharacterized opsin gene in zebrafish retina is surprising given its status as a model system for studies of vertebrate vision and visual development.Item Open questions in plant cell wall synthesis(2023-03-24) McFarlane, Heather EPlant cells are surrounded by strong yet flexible polysaccharide-based cell walls that support the cell while also allowing growth by cell expansion. Plant cell wall research has advanced tremendously in recent years. Sequenced genomes of many model and crop plants have facilitated cataloging and characterization of many enzymes involved in cell wall synthesis. Structural information has been generated for several important cell wall synthesizing enzymes. Important tools have been developed including antibodies raised against a variety of cell wall polysaccharides and glycoproteins, collections of enzyme clones and synthetic glycan arrays for characterizing enzymes, herbicides that specifically affect cell wall synthesis, live-cell imaging probes to track cell wall synthesis, and an inducible secondary cell wall synthesis system. Despite these advances, and often because of the new information they provide, many open questions about plant cell wall polysaccharide synthesis persist. This article highlights some of the key questions that remain open, reviews the data supporting different hypotheses that address these questions, and discusses technological developments that may answer these questions in the future.Item Regulation of Neuronal Chloride Homeostasis by Neuromodulators(Wiley, 2016-03-31) Woodin, Melanie A.; Mahadevan, VivekKCC2 is the central regulator of neuronal Cl− homeostasis, and is critical for enabling strong hyperpolarizing synaptic inhibition in the mature brain. KCC2 hypofunction results in decreased inhibition and increased network hyperexcitability that underlies numerous disease states including epilepsy, neuropathic pain and neuropsychiatric disorders. The current holy grail of KCC2 biology is to identify how we can rescue KCC2 hypofunction in order to restore physiological levels of synaptic inhibition and neuronal network activity. It is becoming increasingly clear that diverse cellular signals regulate KCC2 surface expression and function including neurotransmitters and neuromodulators. In the present review we explore the existing evidence that G-protein-coupled receptor (GPCR) signalling can regulate KCC2 activity in numerous regions of the nervous system including the hypothalamus, hippocampus and spinal cord. We present key evidence from the literature suggesting that GPCR signalling is a conserved mechanism for regulating chloride homeostasis. This evidence includes: (1) the activation of group 1 metabotropic glutamate receptors and metabotropic Zn2+ receptors strengthens GABAergic inhibition in CA3 pyramidal neurons through a regulation of KCC2; (2) activation of the 5-hydroxytryptamine type 2A serotonin receptors upregulates KCC2 cell surface expression and function, restores endogenous inhibition in motoneurons, and reduces spasticity in rats; and (3) activation of A3A-type adenosine receptors rescues KCC2 dysfunction and reverses allodynia in a model of neuropathic pain. We propose that GPCR-signals are novel endogenous Cl− extrusion enhancers that may regulate KCC2 function.Item Rotation of sex combs in Drosophila melanogaster requires precise and coordinated spatio-temporal dynamics from forces generated by epithelial cells(2018) Ho, Ernest Chun Yue; Malagon, Juan Nicolas; Ahuja, Abha; Singh, Rama; Larsen, EllenThe morphogenesis of sex combs (SCs), a male trait in many species of fruit flies, is an excellent system in which to study the cell biology, genetics and evolution of a trait. In Drosophila melanogaster, where the incipient SC rotates from horizontal to a vertical position, three signal comb properties have been documented: length, final angle and shape (linearity). During SC rotation, in which many cellular processes are occurring both spatially and temporally, it is difficult to distinguish which processes are crucial for which attributes of the comb. We have used a novel approach combining simulations and experiments to uncover the spatio-temporal dynamics underlying SC rotation. Our results indicate that 1) the final SC shape is primarily controlled by the inhomogeneity of initial cell size in cells close to the immature comb, 2) the final angle is primarily controlled by later cell expansion and 3) a temporal sequence of cell expansion mitigates the malformations generally associated with longer rotated SCs. Overall, our work has linked together the morphological diversity of SCs and the cellular dynamics behind such diversity, thus providing important insights on how evolution may affect SC development via the behaviours of surrounding epithelial cells.Item Small but Mighty: An Update on Small Molecule Plant Cellulose Biosynthesis Inhibitors(2021-12-27) Larson, Raegan T; McFarlane, Heather ECellulose is one of the most abundant biopolymers on Earth. It provides mechanical support to growing plant cells and important raw materials for paper, textiles and biofuel feedstocks. Cellulose biosynthesis inhibitors (CBIs) are invaluable tools for studying cellulose biosynthesis and can be important herbicides for controlling weed growth. Here, we review CBIs with particular focus on the most widely used CBIs and recently discovered CBIs. We discuss the effects of these CBIs on plant growth and development and plant cell biology and summarize what is known about the mode of action of these different CBIs.