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Recently, A. Kempannien and S. Smirnov provided a framework for showing convergence of discrete

model interfaces to the corresponding SLE curves. They show that given a uniform bound on specific

crossing probabilities one can deduce that the interface has subsequential scaling limits that can be

described almost surely by Löwner evolutions. This leads to the natural question to investigate the

rate of convergence to the corresponding SLE curves. F. Johansson Viklund has developed a framework

for obtaining a power-law convergence rate to an SLE curve from a power-law convergence rate for the

driving function provided some additional geometric information along with an estimate on the growth

of the derivative of the SLE map. This framework is applied to the case of the loop-erased random

walk. In this thesis, we show that if your interface satisfies the uniform annulus condition proposed by

Kempannien and Smirnov then one can deduce the geometric information required to apply Viklund’s

framework. As an application, we apply the framework to the critical percolation interface. The first

step in this direction for critical percolation was done by I. Binder, L. Chayes and H.K. Lei where they

proved that the convergence rate of the Cardy-Smirnov observable is polynomial in the size of the lattice.

It relies on a careful analysis of the boundary behaviour of conformal maps and their discrete analytic

approximations as well as a Percolation construction of the Harris systems. Further, we exploit the

toolbox developed by D. Chelkak for discrete complex analysis on isoradial graphs to show polynomial

rate of convergence for the discrete martingale observables for harmonic explorer and the FK Ising

model to the corresponding continuum objects. Then, we apply the framework developed above to gain

a polynomial convergence rate for the corresponding curves.
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Chapter 1

Introduction and Background

Introduced by Oded Schramm [72], SLE is a one-parameter family of conformally invariant random

curves in simply connected planar domains. It is conjectured that these curves are the scaling limits of

the various interfaces in critical lattice models. These two-dimensional lattice models describe a variety

of physical phenomenon including percolation, the Ising model, loop-erased random walk and the Potts

model. Physicists had predicted that conformal invariance would play a key role in understanding the

universal behaviour of these two-dimensional systems. Universality essentially means that the global

properties of the physical system do not depend on the detailed local description of the model such as

the underlying lattice. Recently, there has been a number of remarkable breakthroughs in the study of

these models. In fact, Fields Medals were awarded to W. Werner in 2006 and to S. Smirnov in 2010 for

their contributions in the study of SLE and critical lattice models.

For several two dimensional lattice models at criticality, it has been shown that the discrete interfaces

converge in the scaling limit to SLE curves [57, 59, 73, 75, 19, 78, 10]. The proofs of these all begin in

the same manner, that is, by describing the scaling limit of some observable related to the interface. The

limit is constructed from the interface itself through conformal invariance. Generally, the difficulty in

the proof arises in how to deduce the strong convergence of interfaces from some weaker notions resulting

in a need to solve some specific technical estimates. The goal of this thesis is to study the rate of the

above-mentioned convergence. In particular, we obtain a power-law convergence rate to an SLE curve

from a power-law convergence rate for a martingale observable under suitable conditions on the discrete

curves.

The Loewner equation is a partial differential equation that produces a Loewner chain which is a

family of conformal maps from a reference domain onto a continuously decreasing sequence of simply

1



Chapter 1. Introduction and Background 2

connected domains. A real-valued function called the driving term controls the Loewner evolution. If

the driving term satisfies a smoothness assumption, then the Loewner equation generates a growing

continuous curve. Conversely, given a suitable curve, one can define the associated conformal maps

which satisfy Loewner equation and recover the driving term. Thus, there is a correspondence

{Loewner curves} ↔ {their driving terms}

Schramm-Loewner evolutions (SLE) is the one-parameter family of random fractal curves in a reference

domain (either unit disk D or the upper half plane H) whose Loewner evolution is driven by a scaled

standard one-dimensional Brownian motion.

In the existing proofs of convergence to SLE, the following two schemes have been suggested:

• Show that the driving processes converge and then extend this to convergence of paths or,

• Show that the probability measure on the space of discrete curves is precompact and then show

that the limiting curve can be described by Loewner evolution.

Given a discrete random curve that is expected to have a scaling limit described by a variant of SLE,

Kempannien and Smirnov in [46] provide the framework for both approaches building upon the earlier

work of Aizenman and Burchard [1]. They show that under similar conditions to [1] one can deduce that

an interface has subsequential scaling limits that can be described almost surely by Loewner evolutions.

An important condition for Kempannien and Smirnov’s results and our framework is what we call the

KS Condition, a uniform bound on specific crossing probabilities. The KS Condition (or one of the

equivalent conditions) has been shown to be satisfied for the following models: FK-Ising model, random

cluster representation of q-Potts model for 1 ≤ q ≤ 4, spin Ising model, percolation, harmonic explorer

and chordal loop-erased random walk (as well as radial loop-erased random walk). The KS Condition

fails for the uniform spanning tree, see [46].

In [45], Viklund examines the first approach to convergence in order to develop a framework for

obtaining a power-law convergence rate to an SLE curve from a power-law convergence rate for the

driving function provided some additional geometric information, related to crossing events, along with

an estimate on the growth of the derivative of the SLE map. For the additional geometric information,

Viklund introduces a geometric gauge of the regularity of a Loewner curve in the capacity parameteriza-

tion called the tip structure modulus. In some sense, the tip structure modulus is the maximal distance

the curve travels into a fjord with opening smaller than ϵ when viewed from the point toward which the

curve is growing. The framework developed is quite general and can be applied to several models. In
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[45], it is shown in the case of loop-erased random walk. However, it can be difficult to show the needed

technical estimate on the tip structure modulus. In this thesis, the framework is applied to other models.

We build upon these earlier works to show that if the condition required for Kempannien and Smirnov’s

framework [46] is satisfied then one is able to obtain the needed additional geometric information for

Viklund’s framework. The end result is to obtain a power-law convergence rate to an SLE curve from

a power-law convergence rate for the martingale observable provided the discrete curves satisfy the KS

Condition, a bound on annuli crossing events.

Theorem 1.0.1 (Binder-Richards). Given a discrete Loewner curve that satisfies the KS Condition and

a suitable martingale observable satisfying a power-law convergence rate, one can obtain a power-law

convergence rate to an SLEκ curve for κ ∈ (0, 8).

As an application, we apply the above framework for rate of convergence to SLE for various statistical

physics models: Percolation, Harmonic Explorer and Ising model.

1.1. The Space of Curves

We will define curves in the same way as in [1] and [46]: planar curves are equivalence classes of

continuous mappings from [0, 1] to C modulo reparameterizations. While it is possible to work with the

entire space C([0, 1],C), it is nicer if we work with

C ′ =

f ∈ C([0, 1],C) :
f is identically a constant or

f is not constant on any sub-intervals


instead. On C ′ we define an equivalence relation ∼ as follows: two functions f1 and f2 in C ′ are

equivalent if there exists an increasing homeomorphism ψ : [0, 1] → [0, 1] such that f2 = f1 ◦ ψ in which

case we say f2 is a reparameterization of f1.

Thus, S := {[f ] : f ∈ C ′} is the space of curves where [f ] is the equivalence class of the function f .

The metric dS([f ], [g]) = inf {||f0 − g0||∞ : f0 ∈ [f ], g0 ∈ [g]} gives S the structure of a metric space.

For a proof that (S, dS) forms a metric space see Lemma 2.1 in [1]. For any domain D ⊂ C, let

Ssimple(D) = {[f ] : f ∈ C ′, f((0, 1)) ⊂ D, f injective},

S0(D) = Ssimple(D).

Let Prob(S) be the space of probability measures on S equipped with the Borel σ−algebra BS and

the weak-* topology induced by continuous functions. Suppose (Pn) is a sequence in Prob(S) and for
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each n, Pn is supported on a closed subset of Ssimple. This can be assumed without loss of generality

for discrete curves. If Pn → P weakly then 1 = lim supPn(S0) ≤ lim supP(S0) by properties of weak

convergence. So, P is supported on S0. See [46] for more information and comments on this probability

structure.

Typically, the random curves that we are interested in connect two boundary points a, b ∈ ∂D in a

simply connected domain D. We will denote Ssimple(D, a, b) for curves in Ssimple(D) whose endpoints

are a and b. The curves we are considering in this paper satisfy the Loewner equation and so must either

be simple or non self-traversing, i.e., curves that are limits of sequences of simple curves. The curves are

usually defined on a lattice L with small but finite lattice mesh. So, we can safely assume the random

curve is (almost surely) simple as we could perturb the lattice and curve to remove any self-intersections,

if necessary.

Although we work with arbitrary simply connected domains D, it will be convenient to work with

reference domains D = {z ∈ C : |z| < 1} and H = {z ∈ C : Imz > 0}. We uniformize by the disk D

in order to work with a bounded domain. The conditions are conformally invariant so the choice of a

particular uniformization domain is not important. To do this, we encode a simply connected domain

D other than C and curve end points a, b,∈ ∂D, if necessary accessible prime ends, by a conformal map

ϕ : D → D with ϕ(a) = −1, ϕ(b) = 1.

Following the generality outlined in [46], our main object of study is (P(D;a,b)) where

• (D; a, b) is a simply connected domain with two distinct accessible prime ends a, b ∈ ∂D and we

can define a conformal map ϕ : (D; a, b) → (D;−1, 1) as above.

• and P is a probability measure supported on a closed subset of

{γ ∈ Ssimple(D; a, b) : beginning and end points of ϕ(γ) are − 1 and 1, respectively} . (1.1.1)

We assume that 1.1.1 is nonempty. In which case, there are plenty such curves, see Corollary 2.17

in [69]. Since (S, dS) forms a metric space, we can think about our family of probability measures as

a sequence ((Pn(Dδn ;aδn ,bδn )))n∈N when discussing convergence. Since our goal is to study convergence

rates of interfaces from statistical physic models to SLE, in general, we are considering a sequence of

interfaces for the same lattice model with shrinking lattice mesh δn → 0. So, Pn is supported on curves

defined on the δn-mesh lattice.

Theory of prime ends. Here we will recall the basic definitions in the theory of prime ends. More
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information and proofs can be found in [69, §2.4 and 2.5]. A crosscut of a bounded domain D is an open

Jordan arc C such that C ⊂ D and C = C ∪ {p1, p2} where pj ∈ ∂D, j = 1, 2. A sequence of crosscuts

{Cn} is called a null-chain if

1. Cn ∩ Cn+1 = ∅ for any n

2. Cn separates Cn+1 from C1 for any n

3. diam Cn → 0 as n→ ∞.

We say that two null chains (Cn) and (C′
n) are equivalent if for any m there exists n so that C′

m

separates Cn from C1 and Cm separates C′
n from C′

1. This equivalence relation forms equivalence classes

called prime ends of D.

Notice that for a Jordan domain such as D each boundary point corresponds one-to-one to a prime

end. So, we can almost forget about the theory of prime ends when we use the definition 1.1.1 for what

is meant by a set of simple curves that connect two fixed boundary points. The prime end theorem

states that there is a one-to-one correspondence between the prime ends of a simply connected domain

and the prime ends of D: Given a mapping Ψ from D onto D, there is a bijection f from ∂D to the prime

ends of D so that for any ξ ∈ ∂D, any null-chain of f(ξ) in D is mapped by Ψ to a null-chain of ξ in D.

Example 1.1.1. Consider the slit domain H\[0, i]. Using the concept of prime end, we can distinguish

between the right-hand side and the left-hand side of a boundary point iy, 0 < y < 1.

We say that a prime end a of D is accessible if there is a Jordan arc P : [0, 1] → C such that

P (0, 1] ⊂ D,P (0) ∈ ∂U and P intersect all but finitely many crosscuts of a null-chain of a. This bound-

ary point P (0) is called the principal point of a, denoted by Π(a), and for an accessible prime end it

is unique. Let Ψ : D → D be a conformal map and ξ ∈ ∂D be the boundary point corresponding to

a. Then a is accessible if and only if the radial limit limt→1 Ψ
−1(tξ) exists. If the limit exists, then

limt→1 Ψ
−1(tξ) = Π(a), see [69, Corollary 2.17].

Lattice Approximation. A lattice approximation of (D; a, b) is constructed where a and b are acces-

sible prime ends of D, being careful when working in neighbourhoods of a and b. Let L be a lattice, i.e.

an infinite graph consisting of periodically repeating parts such as L = Z2. Let δL be L scaled by the

constant δ > 0.

If Ψ : D → D is a conformal map and ζ ∈ ∂D is the boundary point corresponding to a, then a

is accessible if and only if the radial limit lim
t→1

Ψ−1(tζ) exists. If the limit exists, denote it by Π(a).

Similarly, we can do the same for b and denote the limit as Π(b), see [70] for the theory on prime ends.



Chapter 1. Introduction and Background 6

Let w0 ∈ D. For small δ, there are vertices of δL in a neighbourhood of w0. Let Dδ be the maximal

connected sub-graph of δL containing these vertices so that V (Dδ)∪{Π(a),Π(b)} and the edges lie inside

D except for the edges that end at a or b in the following sense. Let P be a curve from a to b. Let t1 be

the smallest t such that P (t) intersects an edge or vertex of Dδ. Else remove the edge that P (t1) is lying

on and choose one of the endpoints to be aδ. If removing the edge cuts the graph into two disconnected

components then discard the one that is not connected to vertices near w0. The same thing can be done

for the largest t = t2 so that P (t) intersects an edge or a vertex of Dδ to obtain bδ. Let P1 be the curve

P (t), t ∈ [0, t1] with the piece of removed edge. That is, a simple curve connecting a to aδ. Similarly,

let P2 be the curve P (t), t ∈ [t2, 1] with the piece of removed edge. That is, a simple curve connecting

bδ to b. The random curve γδ is the random path on Dδ joined with P1 and P2 connecting a and b to Dδ.

1.2. Introduction to the SLE-Quest via Loop-Erased Random Walk

To gain some intuition about the family of random curves that we are studying, it is helpful to have

a discrete model in mind. The goal of this section is to develop insight and intuition as to how SLE

arises as a scaling limit of discrete curves through the loop-erased random walk, which is a probabilistic

model process known to converge to an SLE as well as the rate of this convergence in the capacity

parameterization. We will show that this model satisfies a domain Markov property which is essential

to characterizing SLE.

For any x = (x0, · · · , xm), define the loop-erasure L(x) inductively as follows:

• L0 = x0 for all j ≥ 0

• Erase all loops of x in chronological order.

Inductively, nj = max{n ≤ m : xn = Lj} and Lj + 1 = X1+nj
until j = σ where Lσ := xm.

Suppose that (Xn, n ≥ 0) is a recurrent Markov chain on a discrete state space S started from

X0 = x. Suppose that A ⊂ S is non-empty, and let τA denote the hitting time of A by X. Set

X[0, τA] = (X0, · · · , XτA) and define the loop-erasure L = L(X[0, τA]) = LA up to the hitting time

τA. This can be defined exactly as above. Let σ be the number of steps of LA and for x, y ∈ S, let

p(x, y) be the transition probabilities for the Markov chain (Xn)n≥0. For y ∈ A with positive probability

LA(σ) = X(τA) = y, let L(x, y;A) denote the law of LA conditioned on the event {LA(σ) = y}. That

is, the law of the loop-erasure of the Markov chain X conditioned to hit A at y.

Lemma 1.2.1 (Markov property of LERW). Consider y0, · · · , yj ∈ S so that with positive probability
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for L(x, y0;A),

{Lσ = y0, Lσ−1 = y1, · · · , Lσ−j = yj}.

The condition law of L[0, σ − j] given this event is L(x, yj ;A ∪ {y1, · · · , yj}).

Proof. For each A and x ∈ A, let G(x,A) be the expected number of visits by the Markov chain X

before τA with X0 = x. Then, it is easy to see that for all n ≥ 1, w = (w0, · · · , wn) with w0 = x, wn ∈

A and w1, · · · , wn−1 ∈ S\A,

P[LA = w] =
∑

x:L(x)=w

P[X[0, τA] = x]

= G(w0, A)p(w0, w1)G(w1, A ∪ {w0})p(w1, w2) · · ·G(wn−1, A ∪ {w0, w1, · · · , wn−2})p(wn−1, wn).

This shows that the probability that the loop-erasure of the Markov chain (Xn)n≥0 equals the path w

equals the product of the expected number of returns of (Xn)n≥0 to each step in w times the transition

probabilities from one step to the next. Thus, it is natural to define the function

F (w0, · · · , wn−1;A) =

n−1∏
j=0

G(wj , A ∪ {w0, · · · , wj−1}).

It is easy to check that for all A′, y and y′,

G(y,A′)G(y′, A′ ∪ {y}) = G(y′, A′)G(y,A′ ∪ {y′}).

Thus, F is a symmetric function of its arguments. So,

P[LA0 = w0, · · · , LAσ = wn | Lσ = wn, Lσ−1 = wn−1]

=
p(wn−1, wn)G(wn−1, A)

P[Lσ = wn, Lσ−1 = wn−1]

×
n−2∏
j=0

p(wj , wj+1)G(wj , (A ∪ {wn−1}) ∪ {w0, · · · , wj−1}).

Thus, we have the Lemma when j = 1. Iterating this j times gives the result.

We can see from this Lemma that it is actually natural to index the loop-erased random path

backwards: defined γj = LAσ−j so that γ starts on A and goes back to γ0 = x. Thus, the time-reversal

of loop-erased Markov chains satisfy a Markovian-type property.

It has been shown that for a bounded domain D ⊂ C as δ → 0 the LERW on δZ2 ∩ D converges
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(polynomially fast) to SLE. Heuristically: Suppose that X is a simple random walk on δZ2 ∩D where

D is a simply connected domain with 0 ∈ D and D 6= C. Let A = δZ2\D. We are interested in the

time-reversed loop-erasure of X[0, τA]. Notice that the law of XτA converges to harmonic measure on ∂D

from 0. So, one can study the behaviour of γδ conditioned on {γδ = yδ0} where yδ0 → y ∈ ∂D as δ → 0.

Secondly, we can try to argue that since simple random walk converges to planar Brownian motion

which is conformally invariant and the loop-erasing procedure is purely topological, that the law of γδ

when δ → 0 should convergence to a conformal invariant curve that should be a loop-erasure of planar

Brownian motion. However, the geometry of planar Brownian motion is very complicated and there

is no algorithm to loop erase a Brownian motion path in chronological order. However, this heuristics

strongly suggest that the scaling limit of LERW should be invariant under conformal transformations

and the domain Markov property should still be valid. It turns out that these two properties characterize

a family of continuous processes known as SLE.

Let us explain heuristically how these properties characterize the random family of curves SLE. So

far in our story, we have seen that we are looking for a random continuous curve (γt, t ≥ 0) with no

self crossings in the unit disk D with γ0 = 1, limt→∞ γt = 0 which could be the scaling limit for the

LERW on a grid approximation of D (conditioned to exit D near 1). For t ≥ 0, let ft : D\γ[0, t] → D be

the conformal map normalized by ft(0) = 0 and ft(γt) = 1 (assume for convenience that γ is simple).

Then t 7→ |f ′t(0)| is an increasing continuous function which goes to ∞ as t → ∞. Thus, one can

reparameterize γ such that |f ′

t (0)| = et. By the domain Markov property, the condition law of γ[t,∞)

given γ[0, t] is the law of the scaling limit in the slit domain D\γ[0, t] conditioned to exit at γt. Then,

conformal invariance says that (modulo time-reparameterization) this is the same as the image under

z 7→ f−1
t (z) of an independent copy γ̃ of γ. Thus, for all fixed t ≥ 0

(ft+s, s ≥ 0) = (f̃s ◦ ft, s ≥ 0) in law.

By iterating this process, we see that ft is obtained by iterating infinitely many independent conformal

maps that are infinitesimally close to the identity.

In the 1920s, Loewner observed that if γ[0,∞) is a simple continuous curve starting at 1 in D,

then there is a continuous function ζt on the unit circle which naturally encodes γ. Define ζt =(
f

′

t (0)/|f
′

t (0)|
)−1

. If gt : Dt := D\γ[0, t] → D is a conformal map with gt(0) = 0 and g′

t(0) = et ∈ (0,∞),

then ζt = gt(γt) and gt(z) = ζtft(z). Also, for all z /∈ γ[0, t], we have

∂tgt(z) = −gt(z)
gt(z) + ζt
gt(z)− ζt

.
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This process also reverses: given ζt we can reconstruct γ. For all z ∈ D, define gt(z) as the solution

to the PDE above with initial condition g0(z) = z. If gt(z) = ζt for some t, then define γt = g−1
t (ζt)

(we can do this because we know γ is a simple curve and g−1
t extends continuously to the boundary, see

Theorem 1.3.4). Notice that, in this case, gs(z) is not well-defined for s ≥ t. Thus, in order to define

the random curve γ, it is enough to define the random function ζt = exp(iWt) where (Wt, t ≥ 0) is

real-valued.

Thus, heuristically we should have that Wt:

• be almost surely continuous.

• have stationary increments (since gt is iterations of identically distributed conformal maps).

• and the laws of W and −W should be identical (since the laws of L and the laws of the complex

conjugate of L are identical).

Indeed, with some rigorous definitions this is the case as proved in [56, Theorem 2.6], see Proposition

1.3.1.

The theory of Markov processes tells us that the only possible candidate is Wt = Bκt where B is a

standard Brownian motion and κ ≥ 0 is a fixed constant. Thus, if the scaling limit of LERW exists and

is conformally invariant then for some fixed constant κ which has been proven to be 2, we can define

ζt = exp(i
√
2Bt) for t ≥ 0. Then solve the Loewner equation with initial condition g0(z) = z for each

z ∈ D and construct γ by γt = g−1
t (ζt). In the next section, we will make these arguments rigorous,

which will allow us to define SLE.

1.2.1. Uniform Spanning Tree

Another famous model, the uniform spanning tree was studied in the same paper by Oded Schramm [72]

which led to the introduction of SLE. The uniform spanning tree is intrinsically related to the loop-erased

random walk and the connections between these two processes allow each to be used as an aid to study

the other. A spanning tree T of a connected graph G is a subgraph of G such that for every pair of

vertices v, u in G there is a unique simple path (i.e. self-avoiding) in T with these vertices as endpoints.

A uniform spanning tree (UST) in a finite, connected graph G is a sample from the uniform probability

measure on spanning trees of G. It has been shown that the law of the self-avoiding path with end points

a and b in UST is the same as the law of the LERW from a to {b}. There is an even stronger connection

between these two processes via Wilson’s algorithm which gives an algorithm to generate UST’s using

LERW, see [68].
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Wilson’s algorithm runs as follows. Pick an arbitrary ordering v0, v1, · · · vm for vertices in G. Let

T0 = {v0}. Inductively, for n = 1, 2, · · ·m, define Tn to be the union of Tn−1 and a (conditionally

independent) LERW path from vn to Tn−1 (If vn ∈ Tn−1, then Tn = Tn−1). Regardless of the chosen

order of the vertices, Tm is a UST on G, see [82] or [51] for an alternative proof.

Let G be a finite planar graph with a particular embedding in the plane and let G∗ be its planar

dual. Then there is a bijection between the edges of G and those of G∗ such that for every edge e ∈ G,

e∩ e∗ is a single point, and e does not intersect any other edge of G∗. Given a spanning tree T of G, let

T ∗ denote the graph whose vertices are the vertices of G∗ and whose edges are those edges e∗ such that

e /∈ T . One can see that T ∗ is a spanning tree for G∗. Therefore, if T is a UST on G, then T ∗ is a UST

on G∗. The UST Peano curve is a curve that winds between T and T ∗ and separates them. Indeed,

consider the graph G̃ = G ∪ G∗ where each edge e or e∗ is subdivided into two edges by introducing a

vertex at e ∩ e∗. The subgraph of the planar dual G̃∗ of G̃ containing all edges which do not intersect

T ∪ T ∗ is a simple closed path called the UST Peano path. Thus, the UST Peano curve is obtained as

the interface between the UST and the dual UST. Consider the UST on the grid inside a domain D

but with an arc α ⊂ ∂D wired (identified as a single vertex) and the dual UST also with a wired arc

β ⊂ ∂D where the arcs α and β are essentially complementary arcs. For more details and discussion, see

[57]. Since UST can be built from the LERW via Wilson’s algorithm, the conformal invariance of the

UST scaling limit follows from that of the LERW scaling limit [57]. Then it can be shown to converge

to SLE8.

Theorem 1.2.2. [57, Theorem 1.3] The UST Peano curve scaling limit in a simply connected domain

D with Dobrushin boundary conditions is equal to the image of the chordal SLE8 path.

Wilson’s algorithm gives us an algorithm for generating a spanning tree uniformly at random (without

knowing the number of spanning trees). Given a finite connected graph, there are a lot of spanning trees!

In general, it is not easy to calculate the number of spanning trees. In 1847, Gustav Kirchhoff gave a

formula for the number of spanning trees in terms of the graph Laplacian matrix L = D − A where D

is the diagonal matrix whose ith entry is the degree of vertex i and A is the adjacency matrix, that is

the (i, j) entry is 1 if there is an edge between i and j and is 0 else, see [49]. As a nice example of the

usefulness of Wilson’s algorithm, let us explore how one can use Wilson’s algorithm to prove Kirchhoff’s

Matrix Tree Theorem. We will follow the strategy developed by Greg Lawler: Wilson’s algorithm uses

the Markov chain determined by the transition matrix P = D−1A to explore the graph. Indeed, with

probability 1, Wilson’s algorithm produces a spanning tree uniformly at random. Thus, the probability

of producing any particular spanning tree is the same for all spanning trees, the number of spanning
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trees must be equal to the reciprocal of the probability that Wilson’s algorithm produces a particular

one. Thus, if one can show that the probability that Wilson’s algorithm produces a particular spanning

tree is the reciprocal of Kirchhoff’s expression in terms of L, then one can recover Kirchhoff’s result.

Theorem 1.2.3 (Kirchhoff’s Matrix Tree Theorem). The number of spanning trees in a graph G, T , is

given by det(LG[i]) for any i where LG[i] is the Laplacian matrix with ith row and column removed.

Here, we will give a sketch of the proof via Wilson’s algorithm for full details see [50].

Sketch of Proof. Suppose that T ∈ T was produced by Wilson’s algorithm with branches ∆0 = {v0},

∆1 = [x1,1, · · · , x1,k1 ], · · · ,∆L = [xL,1, · · · , xL,kL ].

Each branch in Wilson’s algorithm is generated by a loop-erased random walk. Thus,

P (T is generated by Wilson’s algorithm) =

L∏
l=1

P∆l

(xl,1, · · · , xl,kl)

where ∆l = ∆0 ∪ · · · ∪∆l−1 for l = 1, · · · , L and P∆(x1, · · · , xK+1) is the probability the loop erasure

on ∆ is exactly [x1, · · · , xK+1].

Notice that for a loop erasure to be exactly [x1, · · · , xK+1] we must have that: The simple random

walk started at x1, then made a number of loops back to x1 without entering ∆, then took a step from

x1 to x2 and made a number of loops at x2 without entering ∆ ∪ {x1}, · · · , made a number of loops

back to xK without entering ∆ ∪ {x1, x2, · · · , xK−1} then took a step from xK to xK+1 ∈ ∆. So,

P∆(x1, · · · , xK+1) =

∞∑
m1,··· ,mK=0

r∆(x1)
m1p(x1, x2)r∆∪{x1}(x)

m2p(x2, x3) · · · r∆∪{x1,··· ,xK−1}(x)
mKp(xK , xK+1)

=

K∏
j=1

1

deg(xj)
1

1− r∆j (xj)

=

K∏
j=1

1

deg(xj)
G∆j (xj , xj)

where p(i, j) is the transition probability of a simple random walk, ∆j = ∆ ∪ {x1, · · · , xj−1} for j =

2, · · · ,K, and G∆(x, y) is the discrete Green’s function. Thus,

P (T is generated by Wilson’s algorithm) =

L∏
l=1

Kl−1∏
j=1

1

deg(xl,j)
G∆l

j
(xl,j , xl,j)

where ∆l
j = ∆l ∪ {xl,1, · · · , xl,j−1} for j = 2, · · · , kl − 1.

By Cramer’s rule we get that P (T is generated by Wilson’s algorithm) = det[G{v0}] where G∆ =
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[G∆(x, y)]x,y∈V \∆. Thus,

P (T is generated by Wilson’s algorithm) =
det(G{v})

det(D{v})

=
1

det(D{v}) det(I{v} − P{v})

= det[L{v}]−1

where L{v} is the submatrix of L obtained by deleting the row and column corresponding to the vertex

v. We can see that the righthand side is independent of reordering the remaining n vertices. Hence, we

have that |T | = det |L{v0}| and the choice of v0 was arbitrary.

1.3. Loewner Evolution and SLE

Schramm’s insight was that, under mild assumptions in addition to conformal invariance, the only

possible scaling limits is a one-parameter family of measures on curves, now known as Schramm Loewner

Evolution. The aim of this section is to define these random curves and state a few fundamental

properties.

1.3.1. Loewner Evolution

To begin, we sketch a derivation of the half-plane version of the Loewner equation, called the chordal

Loewner equation, more details can be found in [4] and [54].

Let γD be some continuous nonself-crossing (possibly self touching) curve in D parameterized by

s ∈ [0, 1] such that γD(0) = −1 and γD(1) = 1. Fix conformal transformation Φ : D → H such that

z 7→ i z+1
1−z . Then γH = Φ(γD) is a simple curve in H with γH(0) = 0 ∈ R, γH((0, 1)) ⊂ H, and |γH(t)| → ∞

as t → 1. One can encode continuous simple curves γH from 0 to ∞ in the closed upper half plane H

via Loewner’s evolution. As a convention, the driving term of a random curve in (D,−1, 1) means the

driving term in H after the transformation Φ using the half-plane capacity parameterization.

To this end, we will start by defining the compact hulls of H. Let Ks denote the hull of γH[0, s]. That

is, Ks is the complement of the connected component of H\γH[0, s] containing ∞ and let t(s) = hcap(Ks)

be the half plane capacity of Ks. Observe that t(s) is non-decreasing but it could remain constant for

some nonzero time and the hulls Ks could remain the same even if γD is the limit of simple curves. What

could happen is that: (a) for some s ∈ (0, 1), the tip of γH(s) is not visible from ∞ or (b) γH(s + s0)

travels along the boundary of Ks for a time s0 > 0 which would not change the hull or (c) γD reaches

+1 for the first time before s = 1 or (d) t(s) remains bounded as s→ 1 which can happen if γH goes to
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∞ very close to R. If none of (a)-(d) happen and t(s) is strictly increasing then, γD can be described by

Loewner evolution.

Figure 1.1: In order for a curve to be described by Loewner equation, the tip of the curve must remain
visible at all times which excludes a certain 6-arm event: When the radius of the inner circle goes to
zero, the portion of the curve that has gone inside the fjord is no longer visible from a distant reference
point and so Loewner equation will not describe this portion of the curve. It also excludes long runs
along the boundary of the domain or along the earlier part of the curve. If this is allowed to happen,
then the driving process is discontinuous. So, it fails to be described by Loewner equation.

In this case, for each time t ≥ 0, there is a unique conformal map gt from Ht := H\γH[0, t] to H

satisfying the hydrodynamic normalization: gt(∞) = ∞ and lim
z→∞

[gt(z) − z] = 0. Then around infinity

we have:

gt(z) = z +
a1(t)

z
+
a2(t)

z2
+ · · ·

where a1(t) = hcap(Kt). Thus, a1(t) is monotone increasing and continuous. We can reparameterize

γH in such a way that a1(t) = 2t. This is called parameterization by capacity. Assuming the above

normalization and parameterization, the family of mappings (gt)t∈[0,T ] satisfies the upper half plane

version of Loewner differential equation:

∂gt
∂t

(z) =
2

gt(z)−Wt
t ∈ [0, T ] (1.3.1)

where t 7→ Wt is continuous and real-valued. Wt is called the driving function. It can be shown that gt

extends continuously to γH(t) and Wt = gt(γH(t)). We say that γH is determined by W .

On the other hand, we can associate a continuous function to any suitable increasing family of hulls

via the Loewner equation. Suppose that W is a real valued continuous function. For z ∈ H, solve the

Loewner differential equation (1.3.1) with g0(z) = z up to τ(z) = inf{t > 0 : gt(z) −W (t) = 0}. Let

Kt := {z ∈ H : τ(z) ≤ t}. Then gt : H\Kt → H is a conformal map and g0(z) = z. The necessary
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and sufficient condition for a family of hulls Kt to be described by Loewner equation with a continuous

driving function is given in the following proposition.

Proposition 1.3.1. Let T > 0 and (Kt)t∈[0,T ] be a family of hulls such that Ks ⊂ Kt for any s < t and

let Ht = H\Kt.

• If (Kt\KS) ∩H 6= ∅ for all s < t then t 7→ hcap(Kt) is strictly increasing.

• If t 7→ Ht is continuous in Caratheodory kernel convergence, then t 7→ hcap(Kt) is continuous.

• Assume that hcap(Kt) = 2t (this time reparameterization is possible given the first two assump-

tions). Then there is a continuous driving function Wt such that gt satisfies Loewner equation

(1.3.1) if and only if for each δ > 0 there exists ϵ > 0 so that for any 0 ≤ s < t ≤ T, |t− s| < δ, a

connected set C ⊂ Hs can be chosen such that diam(C) < ϵ and C separates Kt\Ks from infinity.

The first two facts on capacity are straightforward to deduce, see [54]. A proof of the third claim

can be found in [56]. We call the curves generated by such hulls H−Loewner curves. Similarly, we can

define D−Loewner curves with H replaced by D, γ(0) is on ∂D and lim
t→∞

γ(t) = 0. These are exactly the

curves which can be described using radial Loewner equation driven by a continuous driving function,

see Theorem 1 of [70].

At some point we will need the following observation which is Lemma 2.1 of [57].

Lemma 1.3.2 (Diameter bounds on Kt). There is a constant C > 0 such that the following always

holds. Let W : [0,∞) → R be continuous and let (Kt, t ≥ 0) be the corresponding hull for Loewner’s

chordal equation with driving function W . Set k(t) :=
√
t+max {|W (s)−W (0) : s ∈ [0, t]}, then

∀t ≥ 0 C−1k(t) ≤ diam(Kt) ≤ Ck(t).

Similarly, when Kt ⊂ D is the radial hull for a continuous driving function W : [0,∞) → ∂D, then

∀t ≥ 0 C−1 min{k(t), 1} ≤ diam(Kt) ≤ Ck(t).

The inverse mapping ft := g−1
t where gt is the Loewner flow given above satisfies the reverse Loewner

partial differential equation

∂tft = −f ′t
2

z −Wt
f0(z) = z. (1.3.2)
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A Loewner pair (f,W ) consists of a function f(t, z) and a continuous function W (t), t ≥ 0 where f

is a solution to the reverse Loewner equation (1.3.2) with W as the driving term. A sufficient condition

for (f,W ) to be generated by a curve γ is that the limit

γ(t) = lim
d→0+

f(t,W (t) + id)

exists for all t ≥ 0 and that t 7→ γ(t) is continuous. In the radial case, γ(t) = limd→0+ f(t, (1− d)W (t)),

see Theorem 4.1 of [71].

Note that it may be the case that Kt corresponds to a continuous driving function while not being

generated by a curve. In [66], Marshall and Rohde proved the existence of a Hölder−1/2 driving function

that corresponds to a logarithmic spiral which is not a curve. That is, there is some point at which the

limit above defining γ does not exist. However, they prove that a Loewner chain is always generated by

a simple curve if the driving function is Hölder−1/2 with a sufficiently small Hölder−1/2 norm. Later,

Lind [65] proved that a Hölder-1/2 norm strictly smaller than 4 guarantees the existence of a simple

curve. This condition is sharp which can be seen by considering the function W (t) = 4
√
1− t, see [64]

for more details and discussion.

If the driving term is Hölder continuous, then the existence of the curve and its regularity in the

capacity parameterization is determined by the local behaviour at the tip, i.e., the growth of the derivative

of the conformal map close to preimage of the tip. For a proof, see [45, Proposition 2.2].

Proposition 1.3.3. Let (f,W ) be a D−Loewner pair and assume that W (t) = eiθ(t) where θ(t) is a

Hölder-α on [0, T ] for some α ≤ 1/2. Then the following holds. Suppose there are c < ∞, d0 > 0, and

0 ≤ β < 1 such that

sup
t∈[0,T ]

d|f ′t((1− d)W (t))| ≤ cd1−β for all d ≤ d0.

Then (f,W ) is generated by a curve that is Hölder-α(1−β) continuous on [0, T ]. The analogous statement

holds for H−Loewner pairs.

1.3.2. Schramm Loewner Evolution

A random driving function produces a random Loewner chain. Schramm, in [72], when trying to find a

scaling limit for LERW was led to Brownian motion with speed κ > 0 as the driving function for Loewner

equation, see §1.2. A Schramm Loewner evolution, SLEκ, κ > 0 is the random process (Kt, t ≥ 0) with

random driving function ξ(t) =
√
κBt where B : [0,∞) → R is a standard one-dimensional Brownian

motion. In this section, we will mainly consider chordal SLEκ, that is solutions to the chordal Loewner
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equation with driving function
√
κBt, where Bt is a standard Brownian motion.

Levy’s theorem tells us that Brownian motion is Hölder continuous of order strictly less than 1/2. As

previously discussed, this is not enough to guarantee the existence of a curve via properties of Loewner

equation. Combining with the properties of Brownian motion, Rohde and Schramm estimated the

derivatives of the conformal maps to prove that SLE is generated by a curve with κ 6= 8, see [71]. For

κ = 8, it follows from [57] since SLE8 is a scaling limit of a random planar curve.

Theorem 1.3.4 (Rohde-Schramm, Lawler Schramm Werner). Let (Kt)t>0 be an SLEκ for some κ ∈

[0,∞). Write (gt)t>0 and (ξt)t>0 for the associated Loewner flow and transform. The map g−1(t) : H →

Ht extends continuous to H for all t > 0, almost surely. Moreover, if we set γt = g−1
t (ξt), then (γt)t>0

is continuous and generated by (Kt)t>0, almost surely.

Due to conformal invariance, it is enough for us to define the process in reference domains the upper

half-plane H or the unit disk D. The chordal version of SLE is defined in H and is a family of random

curves connecting two boundary points 0 and ∞. With probability 1, this path is transient, i.e. tends

to ∞ as t → ∞. We can define chordal SLE between any two fixed boundary points a, b in any simply

connected domain Ω via a Riemann map with the law defined by the pushforward by a conformal map

φ : H → Ω with φ(0) = a and φ(∞) = b. This map is unique up to scaling which only affects the time

parameterization of the curve. Similarly, radial SLE defines a conformally invariant family of random

curves connecting a boundary point with an interior point.

Recall that we are able to construct SLEκ as Kt = {z ∈ H : τ(z) ≤ t} where τ(z) is the lifetime of

the maximal solution to Loewner’s equation 1.3.1 starting from z where (Wt)t≥0 is a Brownian motion

of diffusivity κ. A necessary and sufficient condition for a family of increasing compact H-hulls Kt to be

described by Loewner equation with a continuous driving function is that if it satisfies the local growth

property: rad(Kt,t+h) → 0 as h ↓ 0 uniformly on compact sets where Ks,t = gKs
(Kt\Ks) for s < t, see

Proposition 1.3.1. Let L be the set of increasing families of compact H−hulls (Kt)t≥0 having the local

growth property and such that hcap(Kt) = 2t for all t. Then, on this set L, we have a natural definition

of scaling: For λ ∈ (0,∞) and (Kt)t≥0, define Kλ
t = λKλ−2t. Recall that hcap(λKt) = λ2hcap(Kt). So,

we have rescaled time so that (Kλ
t )t≥0 ∈ L.

Schramm’s revolutionary observation that these processes were the unique possible scaling limits

for a range of lattice based planar random systems at criticality, such as loop-erased random walk,

percolation, Ising model, and self-avoiding walk. These limits had been conjectured but Schramm

offered the candidate for the limit object. Any scaling limit is scale invariant. We say that (Kt)t≥0 is

scale invariant if (Kλ
t )t≥0 has the same distribution as (Kt)t≥0 for all λ ∈ (0,∞).
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The proof follows using the scale invariance of Brownian motion. Note that this scale invariance

is not present in the radial case, as is one reason why chordal SLE can be easier to work with than

radial SLE (although, there is a version of radial SLE called whole plane SLE which satisfies some

scale invariance). Moreover, the local determination of certain paths in the lattice models suggests a

form of the domain Markov property. The Markov property of Brownian motion translates into the

domain Markov property for SLE, see [54] for more details. There is also a natural time shift map on

L. Define K(s)
t = gKs(Ks+t\Ks)−Ws. Then (K

(s)
t )t≥0 ∈ L. We say that a random variable (Kt)t≥0 in

L has domain Markov property if (K(s)
t )t≥0 has the same distribution as (Kt)t≥0 and is independent of

Fs = σ(Wr : r ≤ s) for all s ∈ [0∞).

Theorem 1.3.5. Let (Kt)t≥0 be a random variable in L. Then (Kt)t≥0 is an SLE if and only if (Kt)t≥0

is scale invariant and has domain Markov property.

Proof. Let (ξt)t≥0 be the Loewner transform of (Kt)t≥0 and note that (ξt)t≥0 is continuous. For λ ∈

(0,∞) and s ∈ [0,∞), define ξλt = λξλ−2t and ξ(s)t = ξs+t − ξs. Then (Kλ
t )t≥0 has Loewner transform

(ξλt )t≥0 and (K
(s)
t )t≥0 has Loewner transform (ξ

(s)
t )t≥0. Hence, (Kt)t≥0 has the domain Markov property

if and only if (ξt)t≥0 has stationary independent increments. Also, (Kt) is scale invariant if and only

if the law of (ξt) is invariant under Browning scaling. The Lévy-Khinchin Theorem tells us that the

only continuous Lévy processes are scaled Brownian motions with constant drift and the scale invariance

forces the drift to vanish. Hence, (ξt) has both these properties if and only if it is a Brownian motion of

some diffusivity κ ∈ [0,∞), that is to say if and only if (Kt)t≥0 is an SLE.

In fact it was widely conjectured that there would be limit objects, associated to some class of

planar domains, with a stronger property of invariance under conformal maps. Similarly, the conformal

invariance of Brownian motion translates into the conformal invariance for SLE.

Schramm’s Principle. Schramm-Loewner Evolutions are the only random curves satisfying conformal

invariance and domain Markov property.

Given a collection of probability measures (P(D,a,b)) where P is the law of a random curve γ : [0,∞) →

C such that γ([0,∞)) ⊂ D and γ(0) = a, γ(∞) = b. The family (P(D,a,b)) satisfies conformal invariance

if for all (D, a, b) and conformal maps ϕ

P(D,a,b) ◦ ϕ−1 = P(ϕ(D),ϕ(a),ϕ(b)).

Let (Ft)t≥0 be the filtration generated by (γ(t))t≥0. The family (P(D,a,b)) satisfies the domain Markov
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property if: for all (D, a, b) for every t ≥ 0 and for any measurable set B in the space of curves

P(D,a,b)(γ[t,∞) ∈ B|Ft) = P(D\γ[0,t],γ(t),b)(γ ∈ B).

For more details and discussions see [72] and [79].

We will need the following derivative estimate for both chordal and radial SLE. See Appendix A in

[45] for a detailed analysis and proof of these bounds. Suppose κ > 0, let

λC = 1 +
2

κ
+

3κ

32
,

q(β) = min

{
λCβ, β +

2(1 + β)

κ
+

β2κ

8(1 + β)
− 2

}
,

and β+ = max

{
0,

4(κ
√
8 + κ− (4− κ))

(4 + κ)2

}
.

Proposition 1.3.6 (Proposition A.4,[45]). Let T <∞ be fixed and let (ft) be the reverse chordal SLEκ

Loewner chain, κ ∈ (0, 8). Let β ∈ (β+, 1) and q < q(β). There exists a constant 0 < c < ∞ depending

only on T, κ, q such that for every y∗ < 1

P

{
∀y ≤ y∗, sup

t∈[0,T ]

y |f ′(t,W (t) + iy)| ≤ cy1−β

}
≥ 1− cyq∗.

Let (fs,Ws) be a radial Loewner pair generated by the curve γ(s) with W continuous. Recall that

fs : D → Ds satisfies the reverse radial Loewner equation. Let gs = f−1
s and zs = gs(−1)W s. Fix ϵ > 0

and T <∞ and define σ = inf{s ≥ 0 : |1− zs| ≤ ϵ} ∧ T . This is a measure of the “disconnection time”

σ′ when Ks first disconnects −1 from 0 in D, i.e. the first time zs hits 1. Clearly, σ < σ′.

Proposition 1.3.7 (Proposition A.5,[45]). . Let κ ∈ (0, 8). Let ϵ > 0 be fixed and let (fs), 0 ≤ s ≤ σ,

be the radial SLEκ Loewner chain stopped at σ. For every β ∈ (β+, 1) and q < q(β), there exists a

constant c = c(β, κ, q, ϵ, T ) <∞ such that for d∗ < 1

P

{
∀d ≤ d∗, sup

t∈[0,σ]

d |f ′(t, (1− d)W (t))| ≤ cd1−β

}
≥ 1− cdq∗.

The properties of SLEκ depend on the value of κ. One of the most striking examples is the phase

transitions of the SLE path.

Theorem 1.3.8 (Phases of SLE). Let γ be the chordal SLEκ path and let Kt be the associated hulls.

The following statements hold almost surely:

• γ is a simple curve for 0 < κ ≤ 4 and γ[0,∞) ⊂ H ∪ {0}.
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• γ is generated by a curve for 4 < κ < 8 and γ[0, t] ⊂ Kt has double points and touches the real

line. Moreover, for every z ∈ H there exists a random τ = τ(z) <∞ such that z ∈ Kτ .

• and γ is a space filling curve for κ ≥ 8.

Figure 1.2: Chordal SLEκ with κ = 2, 4, 6 corresponding to the same Brownian motion. Pictures by T.
Kennedy.

Proof. (Sketch) Here we will sketch the basic ideas and the proof can be found in [71] (specifically,

Theorem 6.1, 6.4, and 7.1). First, let us explore the transition at κ = 4. Let x > 0 and trace the

evolution of x under the (chordal) SLE flow by defining

Y xt := gt(x)− βt.

From Loewner’s equation, one gets

dY xt = ∂tgt(x)dt− dβt =
2

gt(x)− βt
dt− dβt

=
2

Y xt
dt−

√
κdBt.

Up to a linear time change, this is a Bessel process of dimension 1 + 4/κ. In particular, it will hit the

origin (which means that x is swallowed by the curve in finite time) if and only if the dimension of the

process is less than 2, which happens if and only if κ > 4. In order to show the transience across κ = 8,

one needs to show that the probability of hitting a ball inside the domain is equal to 1 which happens

if and only if κ ≥ 8, see [71, Theorem 7.1].

Actually, some properties of SLE only hold for certain values of κ. This allows one to predict the

κ associated to the discrete lattice model based on the properties of the model that corresponds to the

specific κ. For example, a random path γ in H satisfies the restriction property if for any hull A such

that dist(0, A) > 0, the probability law of γ conditioned not to intersect A is the same as the law of the

path defined in the smaller domain H\A.
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Remark 1.3.9. The self-avoiding walk measure has the same property at the discrete level which is

one reason that it is predicted to converge to SLE8/3 in the scaling limit. However, this presumes the

existence of a scaling limit and its conformal invariance.

Another example, a random curve can satisfy is the locality property if the law of γ stopped when

hitting A is the same as the law of the curve in the smaller domain H\A also stopped when hitting A. In

other words, as long as γ does not touch the boundary of the domain, it does not know if it is growing

in H or H\A. Notice that the exploration process of percolation (see §4.1) satisfies the same property

at the discrete level. This is one way to predict that its scaling limit is SLE6.

Theorem 1.3.10 (Restriction and locality). The SLEκ path has the restriction property if and only if

κ = 8/3 and locality property if and only if κ = 6.

An interesting corollary of the locality property is the following.

Corollary 1.3.11. Let D be a simply connected domain in the plane with a, b, c ∈ ∂D. Then until their

first hitting time of the boundary arc bc, an SLE6 in D from a to b and an SLE6 in D from a to c have

(up to time-change) the same distribution.

That is, SLE6 not only does not know which domain it is growing in, it does not know where it is

going either! More details on the restriction and locality properties can be found in [54], [56], and [53].

SLE is a random fractal object that has been rigorously studied and there are many interesting

properties that we could discuss. However, that is outside the scope of this thesis. We will simply end

this section with the following result, see [3] and [52] for two different proofs.

Theorem 1.3.12 (Hausdorff dimension). Let γ be the chordal SLEκ path κ ≥ 0. Then almost surely

dimH (γ[0, 1]) = min
{
1 +

κ

8
, 2
}

1.3.3. Carathéodory convergence

In this section, we present a known implication of driving process convergence, namely Carathéodory

convergence.

Definition 1.3.13. Suppose Dn is a sequence of domains in D the set of simply connected domains

other than C containing the origin. Let fn be the conformal transformation of D onto Dn with fn(0) =

0, f ′n(0) > 0. We say that Dn converges in the Carathéodory sense to D ∈ D if fn converges to f
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uniformly on compact sets: for each compact K ⊂ D

fn → f uniformly on K

If Dn is a sequence of simply connected domains containing zn we say that Dn converges to D in the

Caratheéodory sense with respect to zn and z if Dn − zn → D − z in the Carathéodory sense.

The Carathéodory topology can also be defined on the set of doubly-connected domains with a marked

point using the same geometric description. We can also talk about the compact hulls converging in

the sense of Carathéodory. Suppose An and A are compact H-hulls and gAn
and gA defined as in

§1.3.1. Then An → A in Carathéodory sense if g−1
An

→ g−1
A uniformly away from R. That is, for every

ϵ > 0, g−1
An

→ g−1
A uniformly on H\{dist(z,R) < ϵ}.

Proposition 1.3.14 (Proposition 3.68, [54]). Suppose An is a compact H−hull with rad(An) uniformly

bounded. Then there exists a compact H−hull A (possibly empty) and a subsequence Anj
such that

Anj → A in the Carathéodory sense.

The following proposition relates the driving function convergence to Carathéodory convergence.

The result for chordal Loewner chains is proved in [54, §4.7] and the proof for radial Loewner chains is

entirely similar. Suppose that Wn
t and Wt are continuous functions from [0,∞) into R. Let gnt and gt

be the corresponding chordal Loewner chains and Kt be the closure of H\Ht where Ht := H\γ[0, t]. We

say that the chain gnt converges to the chain gt in the Carathéodory sense if for every ϵ > 0 and every

T <∞, gnt → gt uniformly on [0, T ]× {z ∈ H : dist(z,KT ) ≤ ϵ}.

Proposition 1.3.15 (Proposition 4.47, [54]). If Wn
t converges to Wt uniformly on compact intervals

[0, T ] then gn → g in the Carathéodory sense.

We also know that if we have a continuous driving function and corresponding Loewner chain, then

there is a sequence of Loewner chains generated by simple curves which converge to it in the Carathéodory

sense.

Proposition 1.3.16 (Proposition 4.48, [54]). If W : [0,∞) → R is a continuous function and gt is

the corresponding Loewner chain, then there exists a sequence of Loewner chains gnt generated by simple

curves γn such that gn → g in the Carathéodory sense.

From this proposition, we cannot conclude that the Loewner chain itself is generated by a path.

However, if the sequence γn is precompact then we know this sequence of curves has subsequential limits
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and can conclude that γn converges to γ uniformly on compact sets. If that is the case, then the Loewner

chain is generated by a curve γ. The following proposition collects these results, see [54, §4.7].

Proposition 1.3.17. Suppose gn are Loewner chains generated by curves γn.

• If γn converges uniformly to γ on compact intervals, then gn → g in the Carathéodory sense where

g is the Loewner chain generated by γ.

• If gn → g in the Carathéodory sense and for every t0, {γnt : 0 ≤ t ≤ t0} is an equicontinuous

family, then there exists a γ such that γn converges uniformly to γ on compact intervals and g is

generated by γ.

Proof. We will use the definition of Caratheodory convergence from [69] (see page 13 of that book).

Suppose γn converges uniformly on compacts to γ. For z ∈ ∂Ω, we have that z = γ(t) =

limn→∞ γn(t). Thus, there exists a zn ∈ ∂Ωn such that zn → z. For the interior, assume w ∈ Ω

with dist(w, γ) > ϵ for some ϵ > 0. Then there exists N such that for n ≥ N with |γn(t)− γ(t)| < ϵ/2.

Let Ωϵ = {z ∈ Ω : dist(z, γ) > ϵ/2}. Then B(w, ϵ/2) ⊂ Ωϵ which means that B(w, ϵ/2) ⊂ Ωn (by Rouche

theorem). Thus, as gt is generated by the curve γ for each t, by the Caratheodory theorem this means

that gnt (z) → gt(z) in the Caratheodory sense.

For the second statement, notice that the convergence in the Caratheodory sense will give us local

boundedness. That is since gn converges to g in the Caratheodory sense that mean that gnt (z) → gt(z)

converges uniformly on [0, T ]×{z ∈ H : dist(z,Kt) ≤ ϵ}. This together with the equicontinuity condition

tells us that there exists a subsequence which converges on compacts by the Arzela-Ascoli theorem. By

the first part, the curve has to be γ. So every convergent subsequence of (γn) converges to γ, which, by

compactness, means that γn converges to γ uniformly on compacts.

In general, it is not true that driving terms converging ||Wn −W ||∞ → 0 implies ||γn − γ||∞ → 0.

(Neither does uniform convergence of the curves imply uniform convergence of the driving terms, see

[64, §4.2 Figure 6] for a counter example). In §4.7 in [54], there is a counter example which shows there

exists g(n) such that W (n)
t → 0 uniformly on compacts but such that the corresponding curves have no

subsequential limits. All that can be concluded is Caratheodory convergence of g(n) → g, (1.3.15) see

[54, Proposition 4.47] for a proof. The last part of the above proposition tells us that if W (n) → W

and if additionally the sequence {γn} is equicontinuous, then uniform convergence follows easily. The

following theorem [64, Theorem 4.1] gives a condition on a sequence of driving terms which guarantees

uniform convergence of the curves. Let W1,W2 : [0, 1] → R.
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Theorem 1.3.18. For every ϵ > 0, C < 4, and D > 0 there is δ > 0 such that if ||W1 −W2|| < δ and if

|Wj(t)−Wj(t
′)| ≤ C|t− t′|1/2 whenever |t− t′| < D and j = 1, 2.

Then the traces γ1, γ2 are Jordan arcs with

sup
t∈[0,1]

|γ1(t)− γ2(t)| < ϵ.

1.4. Approaches to Proving Convergence to SLE and Main Results in

the Literature

The two main schemes used for proving convergence are as follows:

Scheme 1. (a) Establish precompactness for the sequence of probability measures describing the discrete

curves which provides the existence of subsequential limits.

(b) Choose a converging sub-sequence and check that we can describe the limiting curve by

Loewner evolution.

(c) Show that the convergence is equivalent to the uniqueness of the subsequential limit.

An example of this approach can be found in [78]. The main part of this scheme is proving uniqueness

which involves finding an observable with a well-behaved scaling limit. The observable needs to be a

martingale with respect to the information generated by the growing curve and so must be closely related

to the interface. In general, one finds an observable by solving a discrete boundary value problem defined

on the same or related graph as the interface typically resulting in a preharmonic function. Kempannien

and Smirnov’s main result shows that for κ < 8 a certain, uniform bound on the probability of an annulus

crossing event implies the existence of subsequential limits (part(a) of scheme 1) and that they can be

described by Loewner equation with random driving forces (part (b) of scheme 1). This is referred to as

the precompactness part of the scheme.

Recall the general set up: Let Dδ
C be the polygonal domain (union of tiles) corresponding to Dδ and

ϕδ : (Dδ
C; a

δ, bδ) → (D;−1, 1) be some conformal map. This map is not normalized in any specific way

yet. We equip the space of continuous oriented curves by the following metric:

d(γ1, γ2) = inf ||γ1 ◦ ϕ1 − γ2 ◦ ϕ2||∞,

where the infimum is taken over all orientation-preserving reparameterizations of γ1 and γ2.
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Theorem 1.4.1 (See [46]). Let D be a bounded simply connected domain with two distinct accessible

prime ends a and b. If the family of probability measures {γδ} satisfies the KS Condition, given below,

then both {γδ} and {γδD}, the family of probability measures in Ssimple(D) connecting −1 and 1 defined

by the push-forward by ϕ, are tight in the topology associated with the curve distance. Moreover, if γδD is

converging weakly to some random curve γD then the following statements hold:

1. Almost surely, the curve γD can be fully described by the Loewner evolution and the corresponding

maps gt satisfying the Loewner equation with driving process Wt which is α-Hölder continuous for

any α < 1/2.

2. The driving process W δ
t corresponding to γδD convergences in law to Wt with respect to uniform

norm on finite intervals; moreover, supδ>0 E[exp(ϵ|W δ
t |/

√
t)] <∞ for some ϵ > 0 and all t.

Remark 1.4.2. This theorem combines several of the main results from [46]. Note that if the prime

ends a, b are accessible, as assumed, then the convergence of γδ outside of their neighbourhood implies

the convergence of the whole curves.

Crossing Bounds. The following definitions will be useful throughout this paper.

Definition 1.4.3. A curve γδ crosses an annulus A(z0, r, R) = B(z0, R)\B(z0, r) if it intersects both

its inner and outer boundaries ∂B(z0, r) and ∂B(z0, R). An unforced crossing is a crossing that can be

avoided by deforming the curve inside Dδ. That is, the crossing occurs along a sub-arc of γδ contained

in a connected component of A(z0, r, R) ∩Dδ that does not disconnect aδ and bδ.

KS Condition. The curves γδ satisfy a geometric bound on unforced crossings, if there exists C > 1 such

that for any δ > 0, for any stopping time 0 ≤ τ ≤ 1 and for any annulus A(z0, r, R) where 0 < Cr < R

Pδ
(
γδ[τ, 1] makes an unforced crossing of A(z0, r, R) | γδ[0, τ ]

)
< 1/2.

Remark 1.4.4. As the interfaces γδ we are interested in satisfy the domain Markov property, it is

sufficient to check the time zero condition for all domains Dδ simultaneously.

It is shown in [46] that this condition is equivalent to a conformal bound on an unforced crossing and

hence it is conformally invariant, see Proposition 2.6 in [46]. Thus, if the conditions hold for the curves

γδ then they hold for γδD too.

Equivalent Conditions.

Condition G2. The curves γδ satisfy a geometric power-law bound on any unforced crossings if there
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exists K > 0 and ∆ > 0 such that for any δ > 0, for any stopping time 0 ≤ τ ≤ 1 for any annulus

A(z0, r, R) where 0 < r ≤ R

Pδ
(
γδ[τ, 1] makes an unforced crossing of A(z0, r, R) | γδ[0, τ ]

)
< K

( r
R

)∆
.

Instead of an annuli, one can consider all conformal rectangles Q, i.e., conformal images of rectangles

{z : Re z ∈ (0, l), Im z ∈ (0, 1)}. For fixed Q, define the marked sides as the images of the segments [0, i]

and [l, l + i] and the other sides as unmarked. Let the uniquely defined quantity l(Q) be the extremal

length of Q. Say that γδ crosses Q if γδ intersects both of its marked sides.

Condition C. The curves γδ satisfy a conformal bound on any unforced crossings if there exists L, η > 0

such that for any δ > 0 and any conformal rectangle Q ⊂ Dδ that does not disconnect aδ and bδ. If

l(Q) > L and unmarked sides of Q lie on ∂Dδ then

Pδ
(
γδ makes a crossing of Q

)
< 1− η.

Remark 1.4.5. Since all the conditions are equivalent, the constant 1/2 above and in the KS Condition

can be replaced by any other from (0, 1).

Condition C2. The curves γδ satisfy a conformal power-law bound on any unforced crossings if there

exists K > 0 and ϵ > 0 such that for any δ > 0, for any stopping time 0 ≤ τ ≤ 1 for any conformal

rectangle Q that does not disconnect aδ and bδ. If the unmarked sides of Q lie on ∂Dδ then

Pδ
(
γδ[τ, 1] makes a crossing of Q | γδ[0, τ ]

)
< K exp (−ϵl(Q)).

For a discussion on these conditions, see [46]. The KS Condition (or one of the equivalent conditions)

has been shown to be satisfied for the following models: FK-Ising model, spin Ising model, percolation,

harmonic explorer, chordal loop-erased random walk (as well as radial loop-erased random walk), and

random cluster representation of q-Potts model for 1 ≤ q ≤ 4. The KS Condition fails for the uniform

spanning tree, see [46].

Scheme 2. (a) Describe the discrete curve by Loewner evolution. (A discrete curve can always be described

by Loewner evolution).

(b) Use the observable to show that the driving force is approximately
√
κBt for the appropriate

κ.

(c) Show convergence of the driving process in Loewner characterization.
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(d) Improve to convergence of curves.

An example of this scheme being implemented can be found in [57]. The main part of this scheme

involves showing the convergence of driving processes in Loewner characterization. Convergence of

driving processes is not sufficient to obtain path-wise convergence. One needs what is known as a priori

estimates of interface regularity. Kempannien and Smirnov in [46] show that these a priori bounds

can be derived from a certain, uniform bound on the probability of an annulus crossing event, the KS

condition. The following corollary formulates the relationship between convergence of random curves

and the convergence of their driving processes. In particular, if the driving processes of Loewner chains

satisfying this uniform bound on the probability of a certain annulus crossing event converge, then the

limiting Loewner chain is also generated by a curve (part (d) of scheme 2). In this corollary, it is assumed

that H is endowed with a bounded metric. Otherwise, map H onto a bounded domain.

Corollary 1.4.6 (Corollary 1.7 [46]). Suppose that (W δ) is a sequence of driving processes of random

Loewner chains that are generated by simple random curves (γδ) in H, satisfying the KS Condition.

Suppose also that (γδ) are parameterized by capacity. Then

• (W δ) is tight in the metrizable space of continuous functions on [0,∞) with the topology of uniform

convergence on the compact subsets of [0,∞).

• (γδ) is tight in the space of curves S.

• (γδ) is tight in the metrizable space of continuous functions on [0,∞) with the topology of uniform

convergence on the compact subsets of [0,∞).

Moreover, if the sequence converges in any of the topologies above it also converges in the two other

topologies and the limits agree in the sense that the limiting random curve is driven by the limiting

driving process.

In [45], Viklund examines the second approach to develop a framework for obtaining a power law

convergence rate to an SLE curve from a power law convergence rate for the driving function provided

some additional geometric information, related to crossing events, along with an estimate on the growth

of the derivative of the SLE map. For the additional geometric information, Viklund introduces a

geometric gauge of the regularity of a Loewner curve in the capacity parameterization called the tip

structure modulus.

Definition 1.4.7. For s, t ∈ [0, T ] with s ≤ t, we let γs,t denote the curve determined by γ(r), r ∈ [s, t].

Let St,δ to be the collection of crosscuts C of Ht of diameter at most δ that separate γ(t) from ∞ in Ht.
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For a crosscut C ∈ St,δ,

sC := inf{s > 0 : γ[t− s, t] ∩ C 6= ∅}, γC := (γ(r), r ∈ [t− sC , t]).

Define sC to be t if γ never intersects C. For δ > 0, the tip structure modulus of (γ(t), t ∈ [0, T ]) in H,

denoted by ηtip(δ), is the maximum of δ and

sup
t∈[0,T ]

sup
C∈St,δ

diamγC .

(In the radial setting, it is defined similarly.) In some sense, ηtip(δ) is the maximal distance the curve

travels into a fjord with opening smaller than δ when viewed from the point toward which the curve is

growing.

The following lemma collects the results in [45] and tailors them for the situation where a discrete

model Loewner curve approaches an SLE curve in the scaling limit, see Lemma 3.4 in [45].

Lemma 1.4.8. Consider (fj ,Wj) H−Loewner pair generated by the curves γj where fj satisfies the

reverse Loewner flow with continuous driving term Wj (1.3.2) for j = 1, 2. Fix T < ∞ and ρ > 1.

Assume that there exists β < 1, r ∈ (0, 1), p ∈ (0, 1/ρ) and ϵ > 0 such that the following holds with

d∗ = ϵp.

1. There is a polynomial rate of convergence of driving processes:

sup
t∈[0,T ]

|W1(t)−W2(t)| ≤ ϵ.

2. An estimate on the growth of derivative of the SLE map: There exists a constant c′ <∞ such that

the derivative estimate

sup
t∈[0,T ]

d |f ′2(t,W2(t) + id)| ≤ c′d1−β ∀ d ≤ d∗.

3. Additional quantitative geometric information related to crossing probabilities: There exists a con-

stant c <∞ such that the tip structure modulus for (γ1(t), t ∈ [0, T ]) in H satisfies

ηtip(d∗) ≤ cdr∗.
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Then there is a constant c′′ = c′′(T, β, r, p, c, c′) <∞ such that

sup
t∈[0,T ]

|γ1(t)− γ2(t)| ≤ c′′ max{ϵp(1−β)r, ϵ(1−ρp)r}.

The analogous statement holds for D−Loewner pairs.

Remark 1.4.9. In [45], an estimate is given explicitly in terms of d∗ and β on the probability of the

event that the estimate in 2 holds uniformly in t ∈ [0, T ] when f(t, z) is the chordal (and radial) SLEκ

Loewner chain. This is the derivative bound for chordal (and radial) SLE, see Proposition 1.3.6 and

1.3.7.

Let us explore a bit the main ideas in the chordal setting that gives the previous lemma. Suppose

that γn parameterized by capacity is the conformal image of a discrete-model curve on a 1/n-lattice

approximation of a smooth domain D and the driving term of γn, denoted Wn, is coupled with a scaled

Brownian motion W driving the chordal SLE curve γ so that the driving terms are at distance at most

ϵ = n−q for some q < 1. That is, supt∈[0,T ] |W (t)−Wn(t)| ≤ ϵ, where ϵ is small and fixed for now. Let

ft : H → Ht and fnt : H → Hn
t are the solutions to the (reverse) chordal Loewner equation with driving

terms W and Wn, respectively. For each t, Ht and Hn
t are unbounded components of H\γ[0, t] and

H\γn[0, t]. The theorem says that with some regularity on the tip of the curve (which hold uniformly

in t ∈ [0, T ] with high probability in terms of ϵ), we can obtain a power-law bound in terms of ϵ on

supt∈[0,T ] |γ(t)− γn(t)|. Let us give a little intuition into this theorem by a sketch of the ideas involved

in the proof. Let y > 0 which will be chosen later depending on ϵ. Let t ∈ [0, T ]. Then we can write

|γ(t)− γn(t)| ≤ |γ(t)− f(t,W (t) + iy)|

+ |f(t,W (t) + iy)− f(t,Wn(t) + iy)|

+ |f(t,Wn(t) + iy)− fn(t,Wn(t) + iy)|

+ |fn(t,Wn(t) + iy)− γn(t)|

=: A1 +A2 +A3 +A4.

To prove the theorem, one needs to carefully estimate the Aj ’s in terms of ϵ (with the constants only

depend on the parameters and not on ϵ, y, etc.). By the derivative bound assumption 2 (which is shown

to be satisfied for SLE, see Proposition 1.3.6), there are β < 1 and c <∞ such that

|f ′(t,W (t) + id)| ≤ cd−β all d ≤ y
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Then by integrating, we get A1 ≤ cy1−β . Further, the distortion theorem, gives the same bound for A2

if y ≥ ϵ. The third term, A3, is the distance between two solutions to the Loewner equation having

driving terms at supremum distance at most ϵ and evaluated at the same point. Using the reverse-time

Loewner flow, one can get that if Im z = y, then

|ft(z)− fnt (z)| ≤ cϵy−1

with c only depending on T . Thus, we have A3 ≤ cϵy−1 and by Cauchy’s integral formula we get

|y||f ′(t, z)| − y|f ′n(t, z)| ≤ cϵy−1.

If |∆n(t, y) := dist[fn(t,Wn(t) + iy), ∂Hn(t)] then using Koebe’s estimate and derivative estimate one

gets

∆n(t, y) ≤ cy|f ′n(t,Wn(t) + iy)| ≤ cy1−β + cϵy−1.

Notice that this requires no explicit assumptions of |f ′n|, see [45, Proposition 2.4].

Choose y(ϵ) = ϵp for some p ∈ (0, 1). Then

A1 +A2 +A3 ≤ cϵp(1−β) + cϵ1−p.

So, all that is left to do is to estimate A4. Notice that A4 ≥ ∆n(t, ϵ
p) but we really want an upper bound

in terms of ∆n(t, ϵ
p). To do this, there is some additional information of the boundary behaviour of fn

required which is the tip structure modulus (1.4.7). Using this definition, Viklund shows that

|fn(t,Wn(t) + iy)− γn(t)| ≤ c1ηtip(c∆n(t, y)),

where ηtip is the tip structure modulus for γn, see [45, Proposition 3.2]. Thus, if we have a power-law

bound on the tip structure evaluated at cn∆n(t, ϵ
p) for some r ∈ (0, 1), see condition (3), then by (1.4)

A4 ≤ cϵp(1−β)r + cϵ(1− p)r.

It is worth noticing that the estimate on the tip structure modulus is only required on the scale of

∆n(t, ϵ
p) and later we will discuss that the failure of the existence of such a bound implies certain

crossing events for the curve which we will exploit. In order to implement these ideas in our setting,

we will need to show that the assumptions are satisfied uniformly in t ∈ [0, T ] with high probability in
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terms of ϵ.

We build upon these earlier works to show that if the condition required for Kempannien and

Smirnov’s [46] framework is satisfied then one is able to obtain the needed additional geometric in-

formation for Viklund’s framework. The end result is to obtain a power-law convergence rate to an SLE

curve from a power-law convergence rate for the driving terms provided the discrete curves satisfy the

KS Condition, a bound on annuli crossing events.

1.5. Main Theorem

The proof of the main theorem involves two key steps. The first step is to derive a rate of convergence

for the driving terms. Then we extend the result based on the work of Viklund in [45] to a rate of

convergence for the curves. All the a priori estimates required to extend from a convergence of driving

terms to a convergence of paths follows from the discrete curve satisfying the Kempannien-Smirnov

condition. The method developed here is a general framework for obtaining the rate of convergence

of scaling limit of interfaces for various models in statistical physics known to converge to SLE curves,

provided the martingale (or almost martingale) observable converges polynomially to its continuous

counterpart. All proofs of convergence of scaling limits of interfaces to SLE begin by describing some

observable closely related to the interface so that the observable is a martingale (or almost martingale)

with respect to the information generated by the growing curve. Typically, observables are solutions

to some discrete boundary value problem. For instance, it might be a discrete harmonic function with

prescribed boundary values defined on the same or related graph to the observable. In order to obtain

our polynomial rate of convergence, we require the observable to be able to be well estimated so that

one can obtain a polynomial rate of convergence to its continuous counterpart, to be able to verify the

KS condition, and to satisfy the domain Markov property.

The martingale property together with the convergence to a conformally covariant object is sufficient

to imply the convergence of the interface to an SLE.

Schramm’s Principle. Schramm-Loewner Evolutions are the only random curves satisfying conformal

invariance and domain Markov property.

We can define conformal invariance for a model with many different definitions. The usual way it is

defined in the literature is as conformal invariance of interfaces. That is, conformal invariance of the law

of the random curves. An alternative definition is to have conformal invariance refer to the fact that

relevant observables of the model are conformally covariant in the scaling limit.

Definition 1.5.1. A family of functions fD,a1,··· ,an : D → C indexed by simply connected domains with
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marked points a1, · · · , an ∈ D is conformally covariant if there exists

α, α′, β1, β
′
1, · · · , βn, β′

n > 0 such that for any domain D and any conformal map φ : D → C for every

z ∈ D.

fφ(D),φ(a1),··· ,φ(an)(φ(z)) = φ′(z)αφ′(z)α′φ′(a1)
β1φ′(a1)β

′
1 · · ·φ′(an)

βnφ′(an)β
′
n · fD,a1,··· ,an(z).

If α = β1 = β′
1 = · · · = βn = β′

n = 0, then the family is conformally invariant.

Fix conformal transformation Φ : D → H such that z 7→ i z+1
1−z . Let d∗(·, ·) be the metric on H ∪ {∞}

defined by d∗(z, w) = |Φ−1(z) − Φ−1(w)|. If z ∈ H then d∗(zn, z) → 0 is equivalent to |zn − z| → 0

and d∗(zn,∞) → 0 is equivalent to |zn| → ∞. This is a metric corresponding to mapping (H, 0,∞) to

(D,−1, 1) which is convenient because it is compact.

Let D be a simply connected bounded domain with distinct accessible prime ends a, b,∈ ∂D, let

Dn ⊂ D denote the n−1-lattice approximation of D. Fix the maps ϕ : (D, a, b) → (H, 0,∞) and

ϕn : (Dn, an, bn) → (H, 0,∞) so that ϕn(z) → ϕ(z) as n → ∞ uniformly on compact subsets of D with

ϕn(an) → ϕ(a) and ϕn(bn) → ϕ(b) and satisfying the hydrodynamic normalization : ϕn ◦ϕ−1(z)−z → 0

as z → ∞ in H. Then let γ̃n = ϕn(γn) where γn is a random curve on n−1L lattice between an

and bn. Thus, γ̃n is a random curve in (H, 0,∞) parameterized by capacity. Let Dn
t = Dn\γn[0, t],

and gnt : Hnt = ϕn(Dn
t ) → H be the corresponding Loewner evolution with driving terms Wn

t . Thus,

(fnt = (gnt )
−1,Wn

t ) is a H−Loewner pair generated by γ̃n.

To deal with multi-variable observables, let us introduce some notations. Let, for some fixed m and

l, v̂n = (vn1 , . . . , v
n
m; cn1 , . . . , c

n
l ) be a collection of m interior points of the domain Dn and l boundary

points of Dn. Let V m,l(Dn) be the set of all such collections.

If ϕ : D → H is a conformal transformation, define

ϕ̂(v̂) := (ϕ(vn1 ), . . . , ϕ(v
n
m);ϕ(cn1 ), . . . , ϕ(c

n
l )).

Since Dn is a Jordan domain, ϕ(cnj ) is well-defined, by Caratheodory Theorem.

Theorem 1.5.2 (Main Theorem). Suppose that the family of probability measures {γn} satisfies the KS

Condition and the domain Markov property. Assume that one can find some m, l such that for any map

ϕ : D → H there exists a stopping time T > 0, s ∈ (0, 1) and n0(ϕ) such that for every n ≥ n0 and all

v̂ ∈ V m,l(Dn) the following holds.

1. There is a multivariable discrete almost martingale observable Hn
D = Hn

(Dn,an,bn) associated with

the curve γn. That is, Hn
t = Hn

(Dn
t ,γ

n(t),bn) is almost a martingale (for any fixed v̂ ∈ V m,l(Dn))
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with respect to the (discrete) interface γn growing from an:
∣∣∣Hn

Dt
(v̂)− E

[
Hn
Dn

t′
(v̂) |Dn

t

]∣∣∣ ≤ n−s,

for 0 ≤ t ≤ t′ ≤ T

2. There is a C3 function h : Hm × Rl 7→ R such that

(a)
m∑
j=1

∂h

∂xj
+

l∑
j=1

∂h

∂cj

m∑
j=1

∂2h

(∂xj)2
+

l∑
j=1

∂2h

(∂cj)2

is not locally constant in any neighbourhood and satisfies

m∑
j=1

(
1

(xj)2 + (yj)2

(
xj

∂h

∂xj
− yj

∂h

∂yj

))
+

l∑
j=1

1

cj
∂h

∂cj
+
κ

2

 m∑
j=1

∂2h

(∂xj)2
+

l∑
j=1

∂2h

(∂cj)2

 = 0

(b) Hn is polynomially close to its continuous conformally invariant counterpart h. That is, for

any v̂ with distance of any vnj from the boundary bigger than n−β:

∣∣∣Hn
Dt

(v̂)− h(ϕ̂nt (v̂)− Ŵn
t )
∣∣∣ ≤ n−s for any t ≤ T

Here Ŵn
t is the multi-index consisting of m+ l copies of Wn

t .

Then for some 0 < κ < 8 there is a coupling of γ̃n with Brownian motion
√
κB(t), t ≥ 0, with the

property that for n ≥ N ,

P

{
sup
t∈[0,T ]

d∗ (γ̃
n(t), γ̃(t)) > n−u

}
< n−u

for some u ∈ (0, 1) where γ̃ denotes the chordal SLEκ path for κ ∈ (0, 8) in H driven by
√
κB(t) and

both curves are parameterized by capacity. Here N depends on s, n0, and T . u depends only on s.

Moreover, if D is an α-Hölder domain, then under the same coupling, the SLE curve in the image is

polynomially close to the original discrete curve:

P

{
sup
t∈[0,T ]

d∗
(
γn(t), ϕ−1(γ̃(t))

)
> n−λ

}
< n−λ, for n ≥ N

where λ depends only on α and u.

In the future, when we work with H−Loewner pairs, it will be easier for us to work with the bounded

version of H, that is, D with two marked boundary points −1 and 1. Let ϕn : (Dn, a
n, bn) → (D,−1, 1)

be the conformal map. Note that the sequence of domains Dn converge in the Caratheodory sense, i.e.
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the mappings ϕ−1
n converge uniformly in the compact subsets of D to ϕ−1. Moreover, as we show later

(see Lemma 3.4.1), the convergence is polynomially fast if the domain Dn is Hölder. In applications

(Chapter 4), we have sequence of stopping times tending to ∞ and n0 will tend to ∞.

Remark 1.5.3. Notice that we are searching for an “nice enough” observable that converges to a C∋

function such that (h(ϕu(v) −Wu))u≥0 are local martingales. For example, in the case of single point

observable, let ξu = ϕu(v)−Wu where Wu = B(κu) is a time-scaled Brownian motion. We get by Ito’s

formula that

dh(ξt) =
∂h

∂z
dξt +

∂h

∂z
dξt +

1

2

∂2h

∂z2
d〈ξ, ξ〉t +

1

2

∂2h

∂z2
d〈ξ, ξ〉t +

∂2h

∂z∂z
d〈ξ, ξ〉t.

and hence

dh(ξt) =

(
2

ξt

∂h

∂z
(ξt) +

2

ξt

∂h

∂z
(ξt) +

κ

2

(
∂2h

∂z2
(ξt) + 2

∂2h

∂z∂z
(ξt) +

∂2h

∂z2
(ξt)

))
dt−

(
∂h

∂z
(ξt) +

∂h

∂z
(ξt)

)
dWt

Thus, we need to have a smooth function defined on H satisfying the following equation:

2

ξ

∂h

∂z
(ξ) +

2

ξ

∂h

∂z
(ξ) +

κ

2

(
∂2h

∂z2
(ξ) + 2

∂2h

∂z∂z
(ξ) +

∂2h

∂z2
(ξ)

)
= 0

which is the complex form of the equation 2(a) from Theorem 1.5.2.

For the general multivalued observable, as in Theorem 1.5.2, the resulting equation is also the same

as the equation 2(a).

For more information on this type of analysis see [24].

Question 1.5.4. In [46], Kempannien and Smirnov make the following heuristic observation: in general,

a non-degenerate martingale observable should suffice to verify the KS condition as indicated by the work

done in [46]. What precisely should the condition be on a non-degenerate martingale observable that

would make this observation hold?

Question 1.5.5. We have weak convergence of the curves to SLEκ with respect to the supremum norm

on curves modulo reparameterizations. Our discrete curves were parameterized by capacity. Instead, we

could consider parameterizing by length. That is, the discrete curve takes one lattice step in one unit

of time. One edge traversed in time cN−d where d is the growth exponent, d = 5/4 for loop-erased

random walk and d = 7/4 for percolation. The natural time parameterization of the limiting measure

SLEκ is defined by the non-trivial 2∧ (1+ κ
8 ) dimensional Minkowski content. This is called the natural

time parameterization. SLE with its natural parameterization is uniquely characterized by conformal
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invariance and domain Markov property under the constraint that the parameterization is rescaled in a

covariant way by conformal maps. SLE with its natural parameterization is believed to be the scaling

limit of cures in statistical physics models parameterized by length in the Prokhorov topology, see [58]

[62] and [55]. This has been proved for the case of loop-erased random walk to SLE2 and percolation to

SLE6, see [60] [61] and [43], respectively. Is it possible to find a rate of convergence in the natural time

parameterization?

Question 1.5.6. Given a uniform measure on equivalence classes of n−vertex triangulations of the

sphere, it is possible to view a sample from this measure with the graph metric as a random geometry on

the sphere. Such models are called quantum gravity in physics literature. In addition, one can impose

statistical physics models on such random triangulations. There are two models for random surfaces:

random planar maps (RPM) and Liouville Quantum Gravity (LQG). Their conjectured relationship

has been used by physicists to predict and calculate the dimension of random fractals and exponents of

statistical physics models. Another motivation comes from deep conjectures which state that LQG should

describe the large-scale behaviours of random planar maps. It has been shown that there is an equivalence

{√
8/3 LQG

}
↔ {Brownian surfaces} [67].

This equivalence allows one to define SLE on Brownian surfaces in a canonical way. Thus, it is possi-

ble to prove that certain statistical physics models on uniformly random planar maps converge to SLE.

Recently, there have been several convergence results for RPM decorated with a statistical physics model

to SLE on a random surface [38, 39, Gromov-Hausdorff Topology] [28, 40, 37, 47, 36, 63, Peanosphere

Sense] [35, Joint convergence in both senses].

Currently, the rate of convergence is unknown for any model. This could be a direction to under-

standing rate of convergence of quantum gravity. I want to understand and work with the imaginary

geometry and combine classical techniques to find a rate of convergence and to see if this leads to new

results for models on random surfaces. A hope is that techniques from classical approaches can be used

to give a better understanding of certain aspects.

Percolation would serve as a good model to begin with as there have been many recent developments

in understanding convergence.

• Gwynne and Miller use the
√
8/3 LQG metric to prove the convergence of percolation on RPM
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toward SLE6 on a Brownian surface. [39]

• Bernardi, Holden and Sun proved that a number of observables associated with critical site per-

colation on the triangulation converge jointly in law to the associated observables of SLE6 on an

independent
√
8/3 LQG surface. [6]

• In his renowned work on the critical site percolation on the hexagonal lattice, Smirnov’s proof of

Cardy’s formula gives a discrete approximation of the conformal embedding called Cardy embedding.

Holden and Sun show that the uniform triangulation under Cardy embedding converges to the

Brownian disk under the conformal embedding. In addition, they prove a quenched scaling limit

result for critical percolation on uniform triangulations [44].

1.5.1. Outline of Thesis

In this section, I will briefly explain the methods used to obtain the main theorem and the outline

of the thesis. In this thesis, a general framework is outlined for identifying the rate of convergence

of scaling limit of interfaces for various models in statistical physics, provided that the martingale

observable converges polynomially to its continuous counterpart and the discrete-model curve satisfies

the KS Condition. To find a rate of convergence, we re-examine each step of second scheme listed above

keeping track of the rate at each step.

The thesis begins with showing that under our assumptions on the almost martingale observable, one

is able to extract a power-law convergence rate of the corresponding driving terms. The approach for

the derivation of a rate of convergence of driving terms follows almost directly from the scheme outlined

for the loop-erased random walk in [5]. The main contributions to the convergence rate are: the rate

of convergence of the martingale observable, the rate acquired in transferring this to information about

the driving function for a mesoscopic piece of the curve, and the rate obtained after applying Skorokhod

embedding to couple with Brownian motion.

The approach for this step is outlined for LERW from [5] and we follow the same approach. Let

φ := Φ(ϕ) : D → H be the conformal map of D onto H which maps a to 0 and b to ∞. Let the random

curve γ̃ = Φ(ϕ(γ)) be parameterized by capacity andW (t) be the Loewner driving term for γ̃. For j ≥ 0,

define Dj = D\γ[0, j] and let φj : Dj → H be conformal map satisfying φj(z) − φ(z) → 0 and z → b

within Dj . Note that W (tj) = φj(γ(j)) ∈ R. Also let tj := cap∞(γ̃[0, j]) be the half plane capacity of

γ̃.

Consider the lattice scale 1
n and the assumptions with rate of convergence of the martingale observ-

able: ϵ = n−s. Then the main contributions for the rate follow from:
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• The rate acquired in transferring the rate of convergence for the martingale observable into in-

formation about the driving function for a mesoscopic piece (at scale ϵ2/3) of the curve. The

convergence rate at this step ϵ1/3.

Proposition 1.5.7 (Key Estimate). Suppose the family of probability measures γn satisfies the

KS condition. For j ≥ 0, let γ̃, Dj , φj , W (tj) and tj be defined as above. Set pj = φ−1
j (i+W (tj))

and s ∈ (0, 1). Set R = radpj (D). Under the assumptions above on the martingale observable,

there exists c > 0 and R0 > 1 such that if radpj (D) > R0, the following holds. Fix k ∈ N and let

m = min{j ≥ k : tj − tk ≥ R− 2s
3 or |W (tj)−W (tk)| ≥ R− s

3 }.

Then

|E[Wtm −Wtk | Dk]| ≤ cR−s (1.5.1)

|E
[
(Wtm −Wtk)

2 − κE[tm − tk] | Dk

]
| ≤ cR−s. (1.5.2)

The analogous statement holds for D−Loewner pairs.

• And the rate obtained after applying Skorokhod embedding to couple with Brownian motion. The

resulting error is approximately ϵ1/3·1/2.

Theorem 1.5.8. Suppose the family of probability measures γn satisfies the KS condition and the

assumptions above on martingale observables hold. For every T > 0, there exists n0 = n0(T, s) <∞

such that the following holds. For each n ≥ n0, there is a coupling of γn with Brownian motion

B(t), t ≥ 0 with the property that

P

{
sup
t∈[0,T ]

|Wn(t)−W (t)| > n−s

}
< n−s

where W (t) = B(κt) for some κ ∈ (0, 8).

The analogous statement holds for D−Loewner pair.

In Chapter 3, we begin by establishing the required bound on the tip structure modulus in order

to implement Viklund’s framework [45]. Then using the framework, we obtain a power-law rate for

the corresponding curves. Finally, we argue that if our domain D is a Hölder domain then there is

a powerlaw convergence rate for the corresponding conformal maps. The following lemma collects the

results in [45] and tailors them for the situation where a discrete model Loewner curve approaches an
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SLE curve in the scaling limit, see Lemma 3.4 in [45].

Definition 1.5.9. In some sense, the tip structure modulus, ηtip(δ), is the maximal distance the curve

travels into a fjord with opening smaller than δ when viewed from the point toward which the curve is

growing.

Lemma 1.5.10 (Viklund, 2015). Assume that γ1, γ2 are two Loewner curves with driving functions

W1,W2. Fix ρ > 1. Assume that there exists β < 1, r ∈ (0, 1), p ∈ (0, 1/ρ) and ϵ = n−s for some s > 0

such that the following holds with d∗ = ϵp.

1. There is a polynomial rate of convergence of driving processes: supt∈[0,T ] |W1(t)−W2(t)| ≤ ϵ.

2. An estimate on the growth of derivative of the SLE map.

3. Additional quantitative geometric information related to crossing probabilities: There exists a con-

stant c <∞ such that the tip structure modulus for (γ1(t), t ∈ [0, T ]) in H satisfies ηtip(d∗) ≤ cdr∗

Then there is a constant c′′ <∞ such that

sup
t∈[0,T ]

|γ1(t)− γ2(t)| ≤ c′′ max{ϵp(1−β)r, ϵ(1−ρp)r}.

Remark. Condition 2 is established by Viklund for any κ < 8.

The following proposition shows that a curve satisfying the KS Condition satisfies the required bound

on the tip structure modulus.

Proposition 1.5.11 (Binder-Richards). Suppose the random family of curves γn (transformed to D)

satisfies the KS condition. Let η(n)tip (δ) be the tip structure modulus for γn. Then for some p > 0, r ∈ (0, 1),

and α = α(r) > 0. There exists C, c <∞ independent of n and n2 <∞ such that if n ≥ n2 then

Pn
(
η
(n)
tip (n

−p) > cn−pr
)
≤ Cn−α(r).

The following lemma relates the structure modulus on a sufficiently large mesoscopic scale for the

curve in (D;−1, 1) to the image curve in (H; 0,∞).

Lemma 1.5.12. Suppose D is a simply connected domain. Let Dn be the n−1L grid domain approxima-

tion of D and let γn be the Loewner curve transformed onto (D;−1, 1). There is a constant c, c′ <∞ such

that the following holds. Set 0 < r < 1/2 and dn = n−r and let η(n)tip (δ;D) be the tip structure modulus
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for γn. Then for all n sufficiently large (independently of γn) the tip structure modulus η(n)tip (δ;H) for

Φ(γn) in H satisfies

η
(n)
tip (c

′dn;D) ≤ cη
(n)
tip (dn;H).

To summarize:

• By our assumptions, item 1 in Lemma 1.5.10 is satisfied.

• Item 2 is established in [45] for any SLEκ, κ < 8.

• Proposition 1.5.11 establishes the required estimate for the tip structure modulus, item 3.

Thus, we obtain the desired power-law convergence rate for the curves.

Question 1.5.13. We are able to show that the conformal maps to the discrete approximations for Hölder

simply connected domains converge to the corresponding maps polynomially fast, up to the boundary. Is

it possible to extend to a wider class of domains by showing that there is polynomial convergence rate in

a part of the boundary that is hit by SLEκ? For κ < 4, the boundary should not play a role. Suppose

that κ < 4 with no boundary. Is it possible to show polynomial rate of convergence?

In Chapter 4, we show how we can apply the main theorem in the case of specific models: percolation,

harmonic explorer and FK-Ising model.



Chapter 2

Convergence of Driving Term

For the first step, the derivation of a rate of convergence of driving terms follows almost directly from

the scheme outlined in [5]. The main contributions to the convergence rate are: the rate of convergence

of the martingale observable, the rate acquired in transferring this to information about the driving

function for a mesoscopic piece of the curve, and the rate obtained after applying Skorokhod embedding

to couple with Brownian motion. Thus, there are essentially four different scales coming into play here:

1. The microscopic scale which is essentially the lattice size 1
n .

2. The martingale observable scale, δ = δ(n), corresponding to the rate of convergence of the mar-

tingale observable.

3. The mesoscopic scale, δ 2
3 , on which the discrete driving function is close to a martingale. The

convergence rate at this step is essentially determined by the maximal step size of the discrete

driving function, δ 1
3 .

4. The macroscopic scale which is of constant order. One can iterate the estimate for the mesoscopic

pieces of the curve through repeated applications of the domain Markov property in order to “build”

a macroscopic piece of it. The resulting error after Skorokhod embedding is roughly, δ( 1
3 )(

1
2 ).

Recall the set-up described before Theorem 1.5.2. Fix s ∈ (0, 1). Then we have the following result

on the convergence of the driving terms.

Theorem 2.0.1. For every T > 0, there exists n0 = n0(T, s) < ∞ such that the following holds. For

each n ≥ n0, there is a coupling of γn with Brownian motion B(t), t ≥ 0 with the property that

P

{
sup
t∈[0,T ]

|Wn(t)−W (t)| > n−s

}
< n−s

39
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where W (t) = B(κt) for some κ ∈ (0, 8).

The analogous statement holds for D−Loewner pair.

Remark 2.0.2. Throughout the proofs in the remainder of this section, instead of rescaling the grid, we

will consider larger and larger domains. The main theorems in the paper use n−1 to denote the lattice

spacing and the results are presented as n → ∞. Instead, we will rephrase this as the condition that

there is an R0 such that for domains D with radp0(D) > R0 where radp0(D) := inf{|w − p0| : w /∈ D}

is the inner radius of D about p0. With this view, we take the scaling limit by using the domain nD

with n → ∞ and using a unit lattice. Let φn : nD → H be the normalized conformal map. We can see

immediately that φ(z) = φn(z/n). So, the image of the curve in nD on unit lattice under φn is trivially

the same as the image of the curve on a lattice spacing 1/n in D. Also, radp0(nD) = nradp0(D) → ∞.

So the condition radp0(D) > R0 is applied to nD and is really the condition that n is large or in other

words that the lattice spacing is small.

2.1. Key Estimate

As in [57] and [5], the idea is to use the polynomial convergence of the discrete observable to its continuous

counterpart in order to transfer the fact that we have a discrete martingale observable to information

about the Loewner driving function for a mesoscopic piece of the path.

Let us recall our setup: ForD a simply connected bounded domain with distinct accessible prime ends

a, b,∈ ∂D, letDn ⊂ D denote the n−1-lattice approximation ofD. Fix the maps ϕ : (D, a, b) → (D,−1, 1)

and ϕn : (Dn, an, bn) → (D,−1, 1) so that ϕn(z) → ϕ(z) as n → ∞ uniformly on compact subsets of D

with ϕn(an) → ϕ(a) and ϕn(bn) → ϕ(b). Let φn := Φ(ϕn) : Dn → H be the conformal map satisfying

the hydrodynamic normalization: φn ◦ φ−1(z) − z → 0 as z → ∞ in H. Then let γ̃n = φn(γn) where

γn is a random curve on n−1L lattice between an and bn. Thus, γ̃n is a random curve in (H, 0,∞)

parameterized by capacity. Let Dn
t = Dn\γn[0, t], and gnt : Hn

t = Φ(ϕn(Dn
t )) → H be the corresponding

Loewner equation with driving terms Wn
t .

For the rest of this section, let D denote the n−1 lattice approximation in order to simplify notation.

For the conformal map ϕn : (D, an, bn) → (D,−1, 1) and the family of curves {γn} on D, let φ :=

Φ(ϕn) : D → H be the associated conformal map on H and p0 = φ−1(i). Assume the family of

probability measure {γn} satisfies the KS condition.

In this setting, ρ = radp0(D) is the appropriate indicator of the size of D from the perspective of the

map φ. For instance, if ρ is small, then the image under φ of D is not fine near i and we cannot expect

γ̃ = φ(γ) to look like an SLEκ for some κ ∈ (0, 8). (In D, we measure inner radius from the preimage of
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0).

Let the random curve γ̃ = Φ(ϕn(γ)) be parameterized by capacity and W (t) be the Loewner driving

term for γ̃. For j ≥ 0, defineDj = D\γ[0, j] and φj : Dj → H be conformal map satisfying φj(z)−φ(z) →

0 and z → b within Dj . Note that W (tj) = φj(γ(j)) ∈ R. Also let tj := cap∞(γ̃[0, j]) be the half plane

capacity of γ̃.

Proposition 2.1.1. For j ≥ 0, let γ̃, Dj , φj , W (tj) and tj be defined as above. Set pj = φ−1
j (i+W (tj))

and s ∈ (0, 1). Set R = radpj (D). Under the assumptions of Theorem 1.5.2, there exists c > 0 and

R0 > 1 such that if radpj (D) > R0, the following holds. Fix k ∈ N and let

m = min{j ≥ k : tj − tk ≥ R− 2s
3 or |W (tj)−W (tk)| ≥ R− s

3 }.

Then

|E[Wtm −Wtj | Dj ]| ≤ cR−s, and (2.1.1)

|E
[
(Wtm −Wtj )

2 − κE[tm − tj ] | Dj

]
| ≤ cR−s. (2.1.2)

Proof. For the ease of comprehension, we provide a proof for the case of single-variable observable. The

proof in the general case is exactly the same, modulo cumbersome notations.

Notice that radpj (Dm) ≥ 1
2 radpj (Dj) − 1 provided R is large enough. Indeed, let z be on |z| =

1
2 radpj (Dj). Since Imφj(pj) = 1, the Koebe distortion theorem implies a positive constant lower bound

for Imφj(z). Let gt : Ht := φ(Dj) → H be the corresponding Loewner evolution driven by W (t) then

φk = gtk ◦ φ. By chordal Loewner equation, d
dt Imgt(z) ≥ −2

Imgt(z)
which implies d

dt (Imgt(z))
2 ≥ −4.

Thus, τ(z) ≥ tj + (Imφj(z))
2
/4 where τ(z) is the time beyond which the solution to the Loewner ODE

does not exist. Since tm−1 − tj ≤ R− 2s
3 , it follows that z /∈ γ[0,m − 1] for R large enough. Hence,

radpj (Dm−1) ≥ 1
2 radpj (Dj) which implies that radpj (Dm) ≥ 1

2 radpj (Dj)− 1.

Fix w0 ∈ V (D) satisfying |w0 − pj | < radpj (D)/6. Let R > 100max{1, R2s′

0 } for large enough R0.

Notice that we can use Beurling estimate to see that the corresponding vertex is at least Rs′0 -away from

the boundary.

Since Hj is almost a martingale, we get E[Hm(w0) | Dj ] = Hj(w0) +O(R−s). So,

E[hH(φm(w0)−W (tm))|Dj ] = hH(φj(w0)−W (tj)) +O(R−s).

Claim. For all t ∈ [tj , tm], |Wt −Wtj | = O(R− s
3 ) and tm − tj = O(R− 2s

3 ). Indeed, by the definition
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of m, we get the relations when t ∈ [tj , tm−1] and the second when tm−1 replaces tm. Assuming that

R is large enough, if k ∈ {j, · · · ,m − 1} then, by Beurling projection theorem, the harmonic measure

from pj of γ[k, k + 1] in D is O(R− s
3 ). By conformal invariance of harmonic measure, the harmonic

measure from φk(pj) of φk ◦ γ[k, k + 1] in H is O(R− s
3 ). Note that φk(pj) = gtk ◦ φ(pj) and by above

there is a constant positive lower bound for Imφm−1(pj). By Loewner equation, Imgt(z) is monotone

decreasing in t. Hence, Imgt ◦ φ(pj) has constant positive lower bound for t ≤ tm−1. By Loewner

equation again, |∂t(gt ◦φ(pj))| = O(1) for t ≤ tm−1. Integrating this gives |φk(pj)−φj(pj)| ≤ O(R− 2s
3 )

for k = j, · · · ,m− 1. As Wk ∈ φk ◦ γ[k, k + 1], the distance from φk(pj) to φk ◦ γ[k, k + 1] is O(1). So

the harmonic measure estimate gives diam(φk ◦ γ[k, k+1]) = O(R− s
3 ). Since φk(γ[k, k+1]) is the set of

points hitting the real line under Loewner equation in time interval [tk, tk+1], the claim follows by 1.3.2.

Let zt := gt ◦ φ(w0). Since φk(w0) = ztk , by flowing from φj(w0) according to Loewner equation

between times tj and tm, we get that φm(w0) = ztm . By integrating the Loewner equation over this

interval [tj , tm] we get that

ztm − ztj = φm(w0)− φj(w0) =
2(tm − tj)

φj(w0)−Wtj

+O(R−s).

Similarly,

ztm − ztj =
2(tm − tj)

φj(w0)−Wtj

+O(R−s)

By the assumptions of the main theorem 1.5.2, hH(z) is a C3 function in H. Our goal is to estimate

hH(φm(w0) − W (tm)) up to O(R−s) terms. Then Taylor expanding about (ztj ,Wtj ) in first order

with respect to z and z (since |z − ztj | = O(R−2s/3)) and second order with respect to W (since

|W (t)−W (tj)| = O(R−s/3)), we get

hH(φm(w0)−W (tm))− hH(φj(w0)−W (tj)) = ∂zh(ztj −W (tj))(ztm − ztj ) + ∂zh(ztj −W (tj))(ztm − ztj )

+ ∂xh(ztj −W (tj))(Wtm −Wtj )

+
1

2
∂2xh(ztj −W (tj))(Wtm −Wtj )

2 +O(R−s).

We know that the conditional expectation given Dj of the left hand side is O(R−s) because the function

h is close to the observable which is almost a martingale. Then applying the bound for ztm − ztj and

ztm − ztj , we get an equation in terms of E[tm − tj |Dj ], E[Wtm −Wtj |Dj ] and E[(Wtm −Wtj )
2|Dj ]. Let
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ξt = zt −W (t).

O(R−s) =

(
2

ξtj
∂zh(ξtj ) +

2

ξtj
∂zh(ξtj )

)
︸ ︷︷ ︸

A(ξ)

E[(tm − tj)|Dj ] + ∂xh(ξtj )︸ ︷︷ ︸
B(ξ)

E[(W (tm)−W (tj))|Dj ]

+
1

2
∂2xh(ξtj )︸ ︷︷ ︸
C(ξ)

E[(W (tm)−W (tj))
2|Dj ].

Indeed, we have that

O(R−s) =

(
2

Re ξtj
2 + Im ξtj

2

(
Re ξtj∂xh(ξtj )− Im ξtj∂yh(ξtj )

))
︸ ︷︷ ︸

A(ξ)

E[(tm − tj)|Dj ]

+ ∂xh(ξtj )︸ ︷︷ ︸
B(ξ)

E[(W (tm)−W (tj))|Dj ]

+
1

2
∂2xh(ξtj )︸ ︷︷ ︸
C(ξ)

E[(W (tm)−W (tj))
2|Dj ].

Notice that from our assumptions on the function h, we get that A(ξ) = −κC(ξ). If h is non constant

and ∂xh(ξ)/∂2xh(ξ) 6= c for some constant c (given by the assumptions of the main theorem), then B(ξ)

is not proportional to C(ξ). By Koebe’s distortion theorem, we can find v1, v2 ∈ V (D) satisfying |vj −

pj | < radpj (D)/6 and such that the corresponding equations in the variables will generate two linearly

independent equations in the variables E[κ(tm− tj)− (W (tm)−W (tj))
2|Dj ] and E[W (tm)−W (tj)|Dj ].

This proves 2.1.1 and 2.1.2.

2.2. Proof of Theorem 2.0.1

The goal of this section is to show that driving term W of the previous section is close to a standard

Brownian motion with speed κ. The standard tool for proving convergence to Brownian motion is to

use the Skorokhod embedding theorem.

Lemma 2.2.1 (Skorokhod Embedding Theorem). Suppose (Mk)k≤K is and (Fk)k≤K with ||Mk+1 −

Mk||∞ ≤ δ and M0 = 0 a.s. There are stopping times 0 = τ0 ≤ τ1 ≤ · · · ≤ τK for standard Brownian

motion B(t), t ≥ 0, such that (M0,M1, · · · ,Mk) and (B(τ0), B(τ1), · · · , B(τK)) have the same law.
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Moreover, we have for k = 0, 1, · · ·K − 1

E[τk+1 − τk|B[0, τk]] = E[(B(τk+1)−B(τk))
2|B[0, τk]] (2.2.1)

E[(τk+1 − τk)
p|B[0, τk]] ≤ CpE[(B(τk+1)−B(τk))

2p|B[0, τk]] (2.2.2)

for constants Cp <∞ and also

τk+1 ≤ inf{t ≥ τk : |B(t)−B(τk) ≥ δ}.

The proof of Skorokhod embedding theorem can be found in many textbooks including [25]. We

will now prove Theorem 2.0.1 using the Skorokhod embedding theorem above and Proposition 2.1.1.

The proof of Theorem 2.0.1 follows almost identically to the proof in [5] and is only included for the

completeness of the exposition. The outline of the proof is as follows. First, use the domain Markov

property to iterate the key estimate to construct sequences of random variables that almost form mar-

tingales and adjust the sequence to make it a martingale so that it can be coupled with Brownian motion

via Skorokhod embedding. Then show that the stopping times τk obtained by Skorokhod embedding

theorem are likely to be close to capacities κtmk
for all k ≤ K for some appropriate K. Indeed, one can

show that each of these has high probability of being close to the quadratic variation of the martingale.

Now that they are running on similar clocks, all that is left is to show that they are close at all times

with high probability. The key tools for this is the following estimate on the modulus of continuity of

Brownian motion, see Lemma 1.2.1 of [23] for the proof.

Lemma 2.2.2. Let B(t), t ≥ 0, be the standard Brownian motion. For each ϵ > 0 there exists a constant

C = C(ϵ) > 0 such that the inequality

P

(
sup

t∈[0,T−h]
sup
s∈(0,h]

|B(t+ s)−B(t)| ≤ v
√
h

)
≥ 1− CT

h
e−

v2

2+ϵ

holds for every positive v, T and 0 < h < T .

The proof also requires the following maximal inequality for martingales, see Lemma 1 of [42] for the

proof.

Lemma 2.2.3. Let ξk, k = 1, · · · ,K, be a martingale difference sequence with respect to the filtration
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Fk. If σ, u, v > 0 then it follows that

P

(
max

1≤j≤K
|
j∑

k=1

ξk| ≥ σ

)
≤

K∑
k=1

P (|ξk| > u) + 2P

(
K∑
k=1

E[ξ2k|Fk−1] > v

)

+ 2 exp{σu−1(1− log(σuv−1))}.

Proof of Theorem 2.0.1. Depending on the model being considered, it may happen that p0 = φ−1(i) is

“swallowed” before time t. Assume that t is small enough so that

t ≤ 1

100
and P

[
B[0, t] ⊂

[
− 1

10
,
1

10

]]
> 1−R−s (2.2.3)

where B is standard Brownian motion.

Let R0 be as in Proposition 2.1.1. Let k ∈ N be the first integer where radp0(Dk) ≤ R0 and define

t0 := min{t, tk} where tj is as in the proposition. Then following the proof of Theorem 1.1 in [5] (see

below), Proposition 2.1.1 implies we may couple W with a Brownian motion B in such a way that

P

(
sup

t∈[0,t0]

|W (t)−B(κt)| > c1R
−s/6t0

)
< c2R

−s/6

if radp0(D) ≥ R1 and R1 large enough. By the assumptions regarding t, with high probability for all

t ∈ [0, t0], W (t) ∈ [− 1
5 ,

1
5 ]. If R1 is chosen large enough, then P(t0 6= t) < R−s and we have the theorem

when 2.2.3 is satisfied.

Now, consider a more general case. Let ϵ ∈ (0, 1) and t0 := sup{t ∈ [0, T ] : |W (t)| ≤ ϵ−1} and

I := {k ∈ N : tk ≤ t0}. In order to apply Proposition 2.1.1 at every k ∈ I, we need to verify that

radpk(D) ≥ R0 for such k. Since φk(pk) = i+W (tk) and gtk = φk ◦φ−1, we have gtk ◦φ(pk) = i+W (tk).

As gt ◦ φ(pk) flows according to Loewner evolution (1.3.1) starting from φ(pk) at t = 0 to i +W (tk)

at t = tk, for every t ∈ [0, tk], Imgt ◦ φ(pk) ≥ 1 which shows that |∂tgt ◦ φ(pk)| = O(1). Thus,

|φ(pk)| ≤ 1+|W (tk)|+O(T ) ≤ 1+ϵ−1+O(T ). TakeK = {z ∈ C : Im(z) ≥ 1, |z| ≤ O(T+ϵ−1)} compact

and φ(pk) ∈ K for each k ∈ I. Thus, the Koebe distortion theorem implies radp0(D) ≤ O(1)radpk . So,

we can assume that radpk(D) ≥ R0 for all k ∈ I provided we take radp0 ≥ R′ for some constant

R′ = R′(ϵ, T ). Consequently, we can apply the previous argument with base point moved from p0 to a

vertex near pk. So, we have

P

(
sup

t∈[0,t0]

|W (t)−B(κt)| > c1R
−s/6t0

)
< c2R

−s/6
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if radp0(D) ≥ R′. Finally, since standard Brownian motion is unlikely to hit {−ϵ−1, ϵ−1} before time T

if ϵ is small, we can take a limit as ϵ→ 0 to get

P

(
sup
t∈[0,T ]

|W (t)−B(κt)| > c1R
−s/6T

)
< c2R

−s/6

if radp0(D) ≥ R′.

For completeness of exposition, we include the following proof.

Proof of Theorem 1.1 in [5]. Choose without loss of generality T ≥ 1 and assume R > R1 := 100TR0

where R0 is the constant from Proposition 2.1.1. Hence if radp0(D) ≥ R1, Proposition 2.1.1 is not only

valid for the initial domain D, but also for domain D slit by subarcs of γ up to capacity 50T . From here

on, we will not distinguish between most constants instead denoting them by c, which may depend on

T . Define m0 = 0 and m1 = m where m is defined as above. Inductively for k = 1, 2, · · · , define

mk+1 = {j > mk : |tj − tmk
| ≥ R− 2s

3 or |Wj −Wmk
| ≥ R− s

3 }.

Define K = d25TR 2s
3 e and note that tmK

≤ 50T . Set η = R− s
3 . Then by the assumption and the

domain Markov property of γ, we can find a universal c such that

|E
[
Wmk+1

−Wmk
|Fk
]
| ≤ cη3 (2.2.4)

|E
[
(Wmk+1

−Wmk
)2 − κ(tmk+1

− tmk
)|Fk

]
| ≤ cη3 (2.2.5)

for k = 0, · · · ,K − 1 where Fk is the filtration generated by γn[0,mk]. For j = 1, · · · ,K define the

martingale difference sequence

ξj =Wmj −Wmj−1 − E
[
Wmj −Wmj−1 |Fj−1

]
and define the martingale M with respect to Fk by M0 = 0 and

Mk =

k∑
j=1

ξj for k = 1, · · · ,K.

Notice that by Lemma 1.3.2 we get tm ≤ R−2s/3 + O(R−1) and |Wm| ≤ R−s/3 + O(R−1/2) and so

||Mk −Mk−1||∞ ≤ 4η for R sufficiently large. Now that we have a martingale, we can use Skorokhod

embedding to find stopping times {τk} for standard Brownian motion B and a coupling of B with the
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martingale M such that Mk = B(τk), k = 0, · · · ,K. Now, we need to show that these times {τk} are

close to the time we run γ at κtmk
for all k ≤ K. To do this, we show separately that each of these

times are close to the natural time of the martingale Yk. Consider the quadratic variation of M

Yk =

k∑
j=1

ξ2j k = 1, · · · ,K.

First, we will show that Yk is close to κtmk
for every k ≤ K.

Claim.

P
(

max
1≤k≤K

|Yk − κtmk
| ≥ 3η| log η|

)
= O(η) (2.2.6)

for all R large.

The claim follows almost directly from [5] and is only included for completeness of the exposition.

Indeed, set σk = κtmk
− κtmk−1

. For ϕ = 3η| log η|, we have

P

 max
1≤k≤K

|
k∑
j=1

(ξ2j − σj)| ≥ ϕ

 ≤ P

 max
1≤k≤K

|
k∑
j=1

(ξ2j − E[ξ2j | Fj−1])| ≥ ϕ/3


+ P

 max
1≤k≤K

|
k∑
j=1

(ξ2j − E[σj | Fj−1])| ≥ ϕ/3


+ P

 max
1≤k≤K

|
k∑
j=1

(σj − E[σj | Fj−1])| ≥ ϕ/3


=: p1 + p2 + p3.

Applying Lemma 2.2.3 with σ = η| log η|, u = η and v = e−2σu,

p1 ≤
k∑
j=1

P
(
(ξ2j − E[ξ2j | Fj−1])| ≥ η

)

+ 2P

 k∑
j=1

E[
(
ξ2j − E[ξ2j | Fj−1]

)2 | Fj−1])| ≥ e−2η| log η|

+ 2η.

Since maxj |ξj | ≤ 4η, we get that the first sum is zero for R sufficiently large. Combining this and the

definition of K we obtain:

K∑
j=1

E[
(
ξ2j − E[ξ2j | Fj−1]

)2 | Fj−1] ≤ 16d50T eη2
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and so the second sum is also zero for R sufficiently large. In order to bound p2, we notice that by 2.2.4

and 2.2.5

∣∣E[ξ2j | Fj−1]− E[σj | Fj−1]
∣∣ = ∣∣E[(Wmj

−Wmj−1
)2 | Fj−1]− κE[tmj

− tmj−1
| Fj−1] +O(η4)

∣∣ ≤ cη3.

Apply the triangle inequality and then sum over j to see that p2 = 0 if R is large enough. Lastly, p3 can

be estimated similarly to p1 and using the inequality maxk σk ≤ 7η2. This shows the claim.

Now, we need that Yk is close to τk for every k ≤ K.

Claim.

P
(

max
1≤k≤K

|Yk − τk| ≥ 3η| log η|
)

= O(η) (2.2.7)

for large enough R.

Again, the claim follows directly from [5] and is only included for completeness of the exposition.

Set ζk = τk − τk−1 and let Gk denote the sigma algebra generated by B[0, τk]. Again, let ϕ = 3η| log η|.

Then

P

 max
1≤k≤K

|
k∑
j=1

(ξ2j − ζj)| ≥ ϕ

 ≤ P

 max
1≤k≤K

|
k∑
j=1

(ξ2j − E[ξ2j | Gj−1])| ≥ ϕ/3


+ P

 max
1≤k≤K

|
k∑
j=1

(ξ2j − E[ζj | Gj−1])| ≥ ϕ/3


+ P

 max
1≤k≤K

|
k∑
j=1

(ζj − E[ζj | Gj−1])| ≥ ϕ/3


=: p4 + p5 + p6.

The estimate of p4 is identical to the estimate done for p1 above. By the first estimate in Skorokhod

embedding theorem and noting that ξ2j = (B(τj) − B(τj−1))
2, one gets that p5 = 0 for n sufficiently

large. So, we just need to estimate p6. Applying Lemma 4.3, we obtain

p6 ≤
k∑
j=1

P ((ζj − E[ζj | Gj−1])| > η)

+ 2P

 k∑
j=1

E[(ζj −G[ζj | Gj−1])
2 | Gj−1])| > e−2η| log η|

+ 2η.
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By Chebyshev’s inequality, estimates 2.2.1 and 2.2.2, and the definition of K, we obtain

K∑
j=1

P ((ζj − E[ζj | Gj−1])| > η) ≤
K∑
j=1

η−3E[|ζj − E[ζj | Gj−1]|3] ≤ Cη.

Since E[(ζj −E[ζj : Gj−1])
2 | Gj−1] = O(η4), the second probability equals 0 for large enough n. Hence,

p6 = O(η) and we have our claim. Combining equations 2.2.6 and 2.2.7 we get

P
(

max
1≤k≤K

|κtmk
− τk| > 6η| log η|

)
= O(η). (2.2.8)

Now that we have them running on similar clocks, we just need to show that they are close at all

times with high probability. Observe that the last estimate in Skorokhod embedding implies that for

k ≤ K

sup{|B(t)−B(τk−1)| : t ∈ [τk−1, τk]} ≤ 4η. (2.2.9)

Similarly, by the definition of mk and (3.2), we get for large enough n

sup{|Wmk
− t| : t ∈ [tk−1, tk]} ≤ 2η.

By summing over k and using the definitions of ξj and K, we get from 2.2.4

sup{|Wmk
−Mk| : k ≤ K} ≤ cTη.

By the definition of tmk
we have Yk+1 − Yk + tmk+1

− tmk
≥ η2. Summing over k gives Yk + tmK

≥

Kη2 ≥ 50T . Hence, the event that tmK
< κT is contained in the event that |YK − κtmK

| ≥ 2κT. Hence,

2.2.6 implies that

P[tmK
< κT ] = O(η). (2.2.10)

Set h = η| log η| and consider the event

E = {tmK
≥ κT} ∩

{
sup

t∈[0,κT−h]
sup
s∈(0,h]

|B(t+ s)−B(t)| ≤
√
6h| log h|

}
∩
{
max
k≤K

|τk − κtmk
| ≤ 6h

}
.

Then applying Lemma 2.2.3 with ϵ = 1 and v =
√

6| log h| along with 2.2.10 and 2.2.8, we get P(Ec) =
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O(η| log η|). Observe that on E

sup {|W (t)−B(κt)| : t ∈ [0, T ]} ≤ max
1≤k≤K

(sup
{
|W (t)−Wmk

| : t ∈ [tmk−1
, tmk

]
}

+ |Wmk
−B(τk)|+ sup

{
|B(τk)−B(κt)| : t ∈ [tmk−1

, tmk
]
}
)

and the first two terms are O(Tη) uniformly in k. It remains to show that the last term is O(η). On E ,

by 2.2.9 we have

sup{|B(τk)−B(κt)| : t ∈ [tmk−1
, tmk

]}

= sup{|B(τk)−B(s)| : s ∈ [κtmk−1
, κtmk

]}

≤ sup{|B(τk)−B(s)| : s ∈ [τk−1 − 6h, τk + 6h]}

≤ 4η + sup{|B(τk−1)−B(s)| : s ∈ [τk−1 − 6h, τk−1]}+ sup{|B(τk)−B(s)| : s ∈ [τk, τk + 6h]}

≤ 4η + c(ηφ(1/η))1/2

where φ(x) = o(xϵ) for any ϵ > 0. Thus, we can couple W (t) and B so that

P

(
sup
t∈[0,T ]

{|Wt−B(κt)|} > c1Tη
1/2φ1(1/η)

)
< c2η| log η|

where we recall that η = R−α/3 and φ1 is also a subpower function. Hence, there are constants c1, c2

such that for all n sufficiently large,

P

(
sup
t∈[0,T ]

{|Wt−B(κt)|} > c1R
−α/6T

)
< c2R

−α/6.
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From Convergence of Driving Terms

to Convergence of Paths

This section proves a convergence rate result for the interfaces given a convergence rate for the driving

processes. In [45], Viklund develops a framework for obtaining a powerlaw convergence rate to an SLE

curve from a powerlaw convergence rate for the driving function provided some additional estimates

hold. For this, Viklund introduces a geometric gauge of the regularity of a Loewner curve in the

capacity parameterization called the tip structure modulus.

Definition 3.0.1. For s, t ∈ [0, T ] with s ≤ t, we let γs,t denote the curve determined by γ(r), r ∈ [s, t].

Let St,δ to be the collection of crosscuts C of Ht of diameter at most δ that separate γ(t) from ∞ in Ht.

For a crosscut C ∈ St,δ,

sC := inf{s > 0 : γ[t− s, t] ∩ C 6= ∅}, γC := (γ(r), r ∈ [t− sC , t]).

Define sC to be t if γ never intersects C. For δ > 0, the tip structure modulus of (γ(t), t ∈ [0, T ]) in H,

denoted by ηtip(δ), is the maximum of δ and

sup
t∈[0,T ]

sup
C∈St,δ

diamγC .

In the radial setting, it is defined similarly.

51
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3.1. Main Estimate for the Tip Structure Modulus

In order to apply the framework outlined in the previous section, we need to establish the estimate for

the tip structure modulus. We will show that this follows provided γn satisfies the KS condition.

Proposition 3.1.1. Suppose the random family of curves {γn} satisfies the KS condition. Let Dn be

a 1/n-lattice approximation and assume that 1 ≤ inrad(Dn) ≤ 2 and that diam(Dn) ≤ R < ∞ where R

is given. Let γnD be the curve transformed to (D;−1, 1). Let η(n)tip (δ) be the tip structure modulus for γn

stopped when first reaching distance ρ > 0 from 1. There exists a universal constant c0 > 0 such that for

some ϵ > 0 and α > 0. If δ = O(η1+ϵ̃) where ϵ̃ ∈
(
0, 4(1+ϵ)∆

)
. If n is sufficiently large and δ > c0/n then

Pn(η(n)tip (δ) > η) ≤ 2ηα.

Corollary 3.1.2. Suppose the random family of curves {γn} satisfies the KS condition. Let η(n)tip (δ)

be the tip structure modulus for γnD stopped when first reaching distance ρ > 0 from 1. Then for some

p > 0, r ∈ (0, 1), and α = α(r) > 0. There exists C, c < ∞ independent of n and n2 < ∞ such that if

n ≥ n2 then

Pn(η(n)tip (n
−p) > cn−pr) ≤ Cn−α(r).

For a simple curve γ in H, let (gt)t∈R+
and (W (t))t∈R+

be its Loewner chain and driving function.

Then define the hyperbolic geodesic from ∞ to the tip γ(t) as F : R+ × R+ → H by

F (t, y) = g−1
t (W (t) + iy)

and the corresponding geodesic in D for the curve Φ−1γ by

FD(t, y) = Φ−1 ◦ F (t, y).

Fix a small constant ρ > 0 and let τ be the hitting time of B(1, ρ), i.e. τ is the smallest t such that

|γD(t)−1| ≤ ρ. Define E(δ, η) subset of Ssimple(D) as the event that there exists (s, t) ∈ [0, τ ]2 with s < t

such that

• diam (γ[s, t]) ≥ η and

• there exists a crosscut C, diam(C) ≤ δ, that separates γ(s, t] from B(1, ρ) in D\γ(0, s].

Denote the set of such pairs (s, t) by T (δ, η).
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Recall that for 0 < δ ≤ η, we say γ has a nested (δ, η) bottleneck in D if there exists t ∈ [0, T ] and

C ∈ St,δ with diamγC ≥ η. Observe that η is a bound for the tip structure modulus for γ in D if and

only if γ has no nested (δ, η) bottleneck in D. So, in other words, E(δ, η) is the event that there exists

a nested (δ, η)-bottleneck somewhere in D.

The following proposition relates an annulus-crossing type event E(δ, η) ⊂ Ssimple(D) to the speed of

convergence of radial limit of a conformal map towards the tip of γ̃ in H.

Proposition 3.1.3. There exists a constant C > 0 and increasing function µ : [0, 1] → R≥0 such that

lim
δ→0

µ(δ) = 0 and the following holds. Let δ < min(2, ρ), η ≥ 2δ. Assume γD(0, t) ⊂ D\B(1, 2ρ). Let

ηtip(δ) be the tip structure modulus for γD. If γD is not in E(δ, η) then

sup
y∈(0,µ(δ)]

|γ̃(t)− F (t, y)| ≤ Cρ−2ηtip(δ). (3.1.1)

For the proof, we will use Wolff Lemma (see [69]):

Lemma 3.1.4. Let ϕ be conformal map from open set U ⊂ C into B(0, R). Let z0 ∈ C and let

C(r) = U ∩ {z : |z − z0| = r} for any r > 0. Then

inf
ρ<r<

√
ρ
{diam(ϕ(C(r)))} ≤ 2πR√

log 1/ρ
.

Proof of Proposition 3.1.3. Let µ(δ) = exp
(
− 2π2

δ2

)
. Fix t ∈ R≥0 and let Cy = {Φ−1 ◦ g−1

t (Wt + yeiθ) :

θ ∈ (0, π)} and zy = Φ−1 ◦g−1
t (Wt+ iy). By Lemma 3.1.4, for each δ > 0, there exists yδ ∈ [µ(δ),

√
µ(δ)]

such that Cyδ has diameter less than δ. Thus by the definition of tip structure, we have dist(γD(t), Cyδ) ≤

ηtip(δ). Then by the assumption that γD is not in E(δ, η), the path with least diameter from zyδ to γ(t)

has diameter at most δ + ηtip(δ) < 2ηtip(δ).

By the Gehring-Hayman theorem (see [69, Theorem 4.20]), the diameter of J := Φ−1 ◦g−1
t ({Wt+ iy :

y ∈ (0, µ(δ)]}) < Cηtip(δ) where C is an absolute constant. Observe that dist(D\B(1, 2ρ),B(1, ρ)) > ρ

and so J ⊂ D\B(1, ρ). Also, by definition of the map Φ, |Φ′(z)| = 2
|1−z|2 and so 1

2 < |Φ′(z)| < 1
ρ2 . Hence,

diamΦ(J) is at most Cρ−2ηtip(δ). Hence, we get the result (3.1.1).

3.2. Results from Aizenman and Burchard

In order to prove Proposition 3.1.1 we need some results from Aizenman and Burchard found in their

paper [1]. Aizenman and Burchard [1] were studying the regularity of a curve which depends on how
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much the curve “wiggles back and forth.” They concluded that the following assumption on a collection

of probability measures on the space of curves is able to guarantee a certain degree of regularity of a

random curve while remaining intrinsically rough.

Hypothesis H1. The family of probability measures (Ph)h>0 satisfies a power-law bound on multiple

crossings if there exists C > 0, Kn > 0 and sequence ∆n > 0 with ∆n → ∞ as n → ∞ such that for

any 0 < h < r ≤ C−1R and for any annulus A = A(z0, r, R)

P (γ makes n crossings of A) ≤ Kn

( r
R

)∆n

.

Recall the following definition which will be needed in the proceeding result.

Definition 3.2.1. A random variable U is said to be stochastically bounded if for each ϵ > 0 there is

N > 0 such that

Ph (|U | > N) ≤ ϵ for all h > 0

The following is a reformulation of the result of [1]. In particular, Lemma 3.1 and Theorem 2.5 with the

equation (2.22) within the proof.

Denote

M(γ, l) = min

n ∈ N
∣∣∣∣ ∃ partition 0 = t0 < t1 < · · · < tn = 1

s.t. diam (γ[tk−1, tk]) ≤ l for 1 ≤ k ≤ n

 .

Theorem 3.2.2. (Aizenman-Burchard). Suppose that for a collection of probability measures (Ph)h>0

there exists β > 1, n ∈ N, ∆̃ > 0 and D > 0 such that β − 1

β
∆̃ > 2 and

Ph
(
γ crosses A(z0, ρβ , ρ) at least n times

)
≤ Dρ∆̃

for any z0 and any ρ > 0. Then there exists a random variable r0 > 0 which remains stochastically

bounded as h→ 0 with

Ph (r0 < u) ≤ Cu(β−1)∆̃−2β

and

M(γ, l) ≤ C̃(γ)l−2β

where the random variable C̃(γ) = c
(
l
r0

)2β
stays stochastically bounded as h→ 0. Furthermore, (Ph)h>0

is tight and γ can be reparameterized such that γ is Hölder continuous with any exponent less than 1
2
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with stochastically bounded Hölder norm.

Remark 3.2.3. If Hypothesis H1 holds then for any β > 1, one has

Ph
(
γ crosses A(z0, ρβ , ρ) at least n times

)
≤ Dρ(β−1)∆n

and as (β − 1)∆n > 2β for large enough n, the previous theorem applies. In this case, Hypothesis H1

can only be applied for 0 < h < ρβ . Hence, M(γ, l) ≤ C̃(γ)l−2β for l ≥ h1/β . In the other cases we use

that:

M(γ, l) ≤ c

(
h1/β

l

)2

M(γ, h1/β) for 0 < l ≤ h

and M(γ, l) ≤M(γ, h) ≤ C ′l−(4β−2) for h < l < h1/β .

In all cases, we still obtain a power bound.

Kempannien and Smirnov show in [46, Proposition 3.6] that the assumption hypothesis H1 can be

verified given the KS condition holds.

Proposition 3.2.4 ([46]). If the random family of curves {γn} satisfies the KS condition, then it

(transformed to D) satisfies Hypothesis H1.

3.3. Proof of Main Estimate for Tip Structure Modulus

Proof of Proposition 3.1.1. Suppose for now that 0 < δ < η/20. Observe that η is a bound for the tip

structure modulus for γ in D if and only if γ has no nested (δ, η) bottleneck in D. Thus, it is enough to

look at the probability that there exists a nested (δ, η) bottleneck somewhere in D.

Define E(δ, η) as the event that there exists (s, t) ∈ [0, τ ]2 with s < t such that

• diam (γ[s, t]) ≥ η and

• there exists a crosscut C, diam(C) ≤ δ, that separates γ(s, t] from B(1, ρ) in D\γ(0, s].

Denote the set of such pairs (s, t) by T (δ, η). In other words, E(δ, η) is the event that there exists a

nested (δ, η)-bottleneck somewhere in D.

Step 1. Divide the curve γ into N arcs of diameter less than or equal to η/4.
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Let σk be defined by σk = 0 for k ≤ 0 and then recursively

σk = sup{t ∈ [σk−1, 1] : diam(γ[σk−1, t]) < η/4}.

Let Jk = γ[σk−1, σk] and J0 = ∂D. LetM(γ, l) be the minimum number of segments of γ with diameters

less than or equal to l that are needed to cover γ. There is the following observation: If the curve is

divided into pieces that have diameter at most η/4− ϵ for ϵ > 0, then none of these pieces can contain

more than one of the γ(σk) by how the curve was divided. Thus, N ≤ infϵ>0M(γ, η/4− ϵ) ≤M(γ, η/8).

Step 2. For E(δ, η) to occur there has to be a fjord of depth η with mouth formed by some pair

(Jj , Jk) j < k and a piece of the curve enters the fjord resulting in an unforced crossing.

Define stopping times

τj,k = inf{t ∈ [σk−1, σk] : dist(γ(t), Jj) ≤ 2r} for 0 ≤ j < k.

where the distance is the infimum of numbers l such that γ(t) can be connected to Jj by a path of

diam < l in Dt = D\γ[0, t]. If empty, define inf = 1.

Suppose E(δ, η) occurs. Take a crosscut C and pair of times 0 ≤ s ≤ t as in the definition.

Let j < k be such that the end points of C are on Jj and Jk. Notice that dist(Jj , Jk) ≤ δ and so the

stopping time τj,k is finite.

Set z1 = γ(τj,k) and let z2 be any point on Jj such that |z1 − z2| = 2δ and

C ′ = [z1, z2] := {λz1 + (1− λ)z2 : λ ∈ [0, 1]}.

Let V ⊂ Ds be connected component of Ds\C which is disconnected from +1 by C in Ds and let

V ′ = {z ∈ V : z disconnected from 1 by C ′ in Dτj,k}

D′ = Ds\V ′.

Claim There is an unforced crossing of Aj,k := A(z1, 2δ, η/2) as observed at time τj,k.

Indeed, consider the subpath of Jj ∪ Jk which connects end point of C to endpoint of C ′. That is,



Chapter 3. From Convergence of Driving Terms to Convergence of Paths 57

Figure 3.1: The boundary and the curve are cut into pieces of diameter < η/4. The dotted portion of
the curve is an example of event Ej,k and has diameter > η/8. The number of Jk’s and the number of
dotted pieces are both stochastically bounded as h→ 0.

γ[0, tC ] where tc ∈ [0, 1] is the unique time such that {γ(tC)} = C ∩ Jk. So,

∂D′ = ∂D ∪ γ[0, tC ] ∪ C ⊂ (∂D ∪ γ[0, τj,k]) ∪ (Jk ∪ C) .

Hence, Jk ∪ C separates V from +1 in Dτj,k . Since V \V ′ is the set of points disconnected by C from

+1 in Ds but not by C ′ in Dτj,k , we see that

V \V ′ ⊂ union of bounded components of C\ (Jj ∪ Jk ∪ C ∪ C ′) .

Thus, V \V ′ ⊂ B (z1, η/4 + 3δ) . Since γ[s, t] is a connected subset of V, there are [s′, t′] ⊂ (τj,k, t] such

that γ[s′, t′] ⊂ V ′ and it crosses Aj,k := A(z1, 2δ, η/2). Thus, γ[s, t] contains an unforced crossing of Aj,k

as observed at time τj,k.

As γ[s, t] ⊂ V and γ[s, t] is connected, we can find [s′, t′] ⊂ (τj,k, t] such that γ[s′, t′] ⊂ V ′ and it

crosses Aj,k = A(z1, 2δ, η/2). Thus, γ[s, t] contains an unforced crossing of Aj,k as observed at time τj,k.

Step 3. Estimate P (E(δ, η)).

Define

Ej,k =

γ ∈ Ssimple (D,−1,+1)

∣∣∣∣ γ[τj,k, 1] contains a crossing of

Aj,k contained in Ãj,k
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where Ãj,k :=
{
z ∈ Aj,k ∩Dτj,k : connected component of z is disconnected from 1 by C ′ in Dτj,k

}
.We

have seen that

E(δ, η) ⊂
∞⋃
j=0

∞⋃
k=j+1

Ej.k

and by the KS Condition,

P (Ej,k) ≤ K

(
δ

η

)∆

.

Let ϵ > 0. Let m ∈ N then using the tortuosity bounds for P(N > m) and the facts that {N ≤

m} ∩ Ej,k = ∅ when k > m and P({N ≤ m} ∩ Ej,k) ≤ P(Ej,k), we get

P(E(δ, η)) ≤ P(N > m) + P

 ⋃
0≤j<k

{N ≤ m} ∩ Ej,k


≤ constant

[
m−1/2(1+ϵ)[ϵ∆k−2(1+ϵ)] +m2

(
δ

η

)∆
]
.

Choose m = η−2(1+ϵ). Then

P(E(δ, η)) ≤ constant
[
ηϵ∆k−2(1+ϵ) + η−4(1+ϵ)

(
δ

η

)∆
]
.

If we choose δ = cη1+ϵ̃ where ϵ̃ ∈
(
0, 4(1+ϵ)∆

)
then

P
(
E(cη1+ϵ̃, η)

)
≤ cηα for some α > 0.

3.4. Convergence of Discrete Domains

In this section, we prove that the conformal maps to the discrete approximations for Hölder simply-

connected domains converge to the corresponding maps polynomially fast, up to the boundary.

Lemma 3.4.1. Let Dn be a 1/n-discrete lattice approximation of domain D, w0 be a point in D and

ψ, ψn be the conformal maps of the unit disc D to D and Dn respectively with ψ(0) = ψn(w0) = 0,

ψ′(0) > 0, ψ′
n(0) > 0.

Suppose that ψ is α-Hölder. Then there are constants C, β > 0 and N depending only on the lattice

in question, α, the α-Hölder norm of ψ, and on the conformal radius ψ′(0), such that for n > N and
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any z ∈ D we have

|ψ(z)− ψn(z)| < Cn−β .

Remark 3.4.2. The same estimate is true for the maps ψ and ψn normalized to map {−1, 1} to

A, B ∈ ∂D and their discrete approximations An, Bn ∈ ∂Dn correspondingly, provided that they are

additionally normalized to converge polynomially fast at 0.

Remark 3.4.3. One can actually show that the polynomial convergence of the approximating maps ψn

to ψ up to the boundary implies that ψ is α-Hölder for some α.

Proof. Let

Ωn := ψ−1(Dn) ⊂ D.

Let also ρn be the confomal map of D onto Ωn with ρn(0) = 0, ρ′n(0) > 0. Thus ψn = ψ ◦ ρn. Since the

map ψ it self is Hölder, it is enough to check that

|ρn(z)− z| ≤ n−γ for some γ > 0. (3.4.1)

Observe that any point of ∂Dn is at distance at most C1
1
n from the boundary of ∂D, where C1 depends

only on the lattice. Thus, by the classical Beurling estimate (see for example Theorem III in [81]), for

any ζ ∈ ∂Ωn, we have |ζ| > 1− C2√
n
.

To see that, we will apply a restatement of another classical result, a lemma of Marchenko (see, for

example, [81], Section 3 and Theorem IV):

Lemma 3.4.4 (Marchenko Lemma). Let Γ be a closed Jordan curve which lies in the ring 1−ε ≤ |ζ| ≤ 1.

Let λ = λ(ε) have the property that any two points ζ1, ζ2 ∈ Γ with |ζ1 − ζ2| ≤ ε can be connected by an

arc of Γ of diameter at most λ.

Let ρ be the conformal map of D onto the interior of Γ with ρ(0) = 0 and ρ′(0) > 0. Then

|ρ(z)− z| ≤ C3ε log
1

ε
+ C4λ,

where C3 and C4 are some absolute constants.

Let us show that for the curve ∂Ωn

λ

(
C2√
n

)
≤ n−η (3.4.2)

for some η > 0. Indeed, let Γ0 := Γ[ζ1,ζ2] be an arc of Γ with endpoints ζ1, ζ2 with |ζ1 − ζ2| ≤ C2√
n
. We

assume that Γ0 is the shorter of two such arcs. Then, since ψ(ζ1) and ψ(ζ2) are C1

n -close to ∂D, ψ(Γ0)
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is separated from ψ(0) by some crosscut of the length at most

2
C1

n
+ C5n

−α/2

where C5 depends only on the α-Hölder norm of ψ. Applying Beurling Lemma again we see that

diamΓ0 ≤ C6n
−α/4, which implies (3.4.2).

Combining Marchenko Lemma and (3.4.1) gives us our result.

3.5. Proof of Main Theorem

The proof now follows almost directly from the proof of Theorem 4.3 in [45].

Proof of Theorem 1.5.2. For κ ∈ (0, 8), let γ be the chordal SLEκ path in H corresponding to the

Brownian motion in Theorem 2.0.1. Hence, there is a coupling of chordal SLEκ path and the image

of the interface path γ̃n = φn(γn). The goal is to estimate the distance between these curves in this

coupling. Take s ∈ (0, 1) and n > n0 where n0 is as in Theorem 2.0.1. Fix ρ > 1 and for p ∈ (0, 1/ρ), let

ϵn = n−s dn = (ϵn)
p.

For each n ≥ n0, define three events each of which we have seen occur with large probability in our

coupling. On the intersection of these events, we can apply the estimate from Lemma 1.4.8.

1. Let An = An(s) be the event that the estimate

sup
t∈[0,T ]

|Wn(t)−W (t)| ≤ ϵn

holds. By Theorem 2.0.1 we know that there exists n0 <∞ such that if n ≥ n0 then

P(An) ≥ 1− ϵn.

2. For β ∈ (β+, 1) where β+ is as in Proposition 1.3.6, let Bn = Bn(s, β, T, cB) be the event that the

chordal SLEκ reverse Loewner chain (ft) driven by W (t) satisfies the estimate

sup
t∈[0,T̃ ]

d |f ′(t,W (t) + id)| ≤ cBd
1−β ∀ d ≤ dn.
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where T̃ ≤ T is the (stopping) time defined in Proposition 1.3.6 (and Proposition 1.3.7, for radial

case). Then by Proposition 1.3.6 (1.3.7 respectively) there exists c′B < ∞, independent of n, and

n1 <∞ such that if n ≥ n1 then

P(Bn) ≥ 1− c′Bd
q
n

where q < qκ(β) = min
{
β
(
1 + 2

κ + 3κ
32

)
, β + 2(1+β)

κ + β2κ
8(1+β) − 2

}
.

3. Let γD be γn transformed to ΣD. For r ∈
(
0, ∆

∆+4(1+ϵ)

)
, let Cn = Cn(s, r, p, ϵ, cC) be the event that

the tip structure modulus for γD, t ∈ [0, T ], in D, η(n)tip , satisfies

η
(n)
tip (dn) ≤ cCd

r
n.

We know from Proposition 3.1.1 that there exists C, c < ∞, independent of n, and n2 < ∞ such

that if n ≥ n2 then

P(Cn) ≥ 1− cdα(r)n .

Notice that by Proposition 3.1.3 we get |γ̃n(t)− g−1
t (Wn(t)− idn)| ≤ Cη

(n)
tip (dn).

Now we will look at intersection of these events. Thus, there exist cB , cC < ∞ and c < ∞, all

independent of n (but dependent on s, r, p, T, β, ϵ), such that for all n sufficiently large

P(An ∩ Bn ∩ Cn) ≥ 1− c(ϵn + dqn + dα(r)n )

and on the event An∩Bn∩Cn we can apply Lemma 1.4.8 with constants c = cC and c′ = cB , independent

of n, to see that there exists c′′ <∞ independent of n such that for all n sufficiently large

sup
t∈[0,T̃ ]

|γ̃n(t)− γ̃(t)| ≤ c′′(dr(1−β)n + ϵ(1−ρp)rn ).

Since dn = ϵpn, one can see that dr(1−β)n dominates when p ∈ (0, 1/(1 + ρ − β)] and ϵ
(1−ρp)r
n whenever

p ∈ [1/(1 + ρ− β), 1]. Suppose p ∈ (0, 1/(1 + ρ− β)]. Set

µ(β, r) = min {r(1− β), q(β), α(r), (1− r)∆− 4r(1 + ϵ)}

The optimal rate would be given by optimizing µ over β, r and then choosing p very close to 1/(1+ρ−β)
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as choosing p in [1/(1 + ρ− β), 1] will not provide any better. Set

µ(β∗, r∗) = max {µ(β, r) : β+ < β < 1, 0 < r < ∆/(∆ + 4(1 + ϵ))}

Consequently,

P

(
sup
t∈[0,T̃ ]

|γ̃n(t)− γ(t)| > ϵmn

)
< ϵmn

where m < m∗ = µ(r∗,β∗)
2−β∗

Now assume that D is a Hölder domain. Let ψ : D 7→ D be the corresponding Riemann map,

and ψn : D 7→ Dn be the map to the discrete lattice approximation. Observe that by Lemma 3.4.1,

γn = ψn(γ̃n(t)) is n−β close to ψ(γ̃n(t)) for some β > 0. But since ψ itself is Hölder, ψ(γ̃n(t)) is n−β1

close to ψ(γ), which is the SLE curve in D. This concludes the proof of the last assertion.
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Applications

In this section, we will apply the framework to the modified bond percolation model, the harmonic

explorer and the FK-Ising model.

4.1. Percolation

In this section, we will apply the framework to the modified bond percolation model described in [14,

§2.2] which includes the triangular site percolation problem described in [77].

Remark 4.1.1. Recently, Khristoforov and Smirnov constructed an observable which is exactly holo-

morphic instead of approximately holomorphic, see [48]. Using this observable, could reduce some of

work involved in checking conditions. However, they work on branched double coverings of discrete

domains which would need to be taken into account.

Let Ω ⊂ C be a simply connected domain (whose boundary is a simple closed curve). Let a and c

be two distinct points on ∂Ω or prime ends, if necessary, which separate it into a curve c1 going from a

to c and c2 going from c to a such that ∂Ω\{a, c} = c1 ∪ c2 and impose boundary conditions so that c1

is coloured blue and the complementary portion, c2 is coloured yellow. Consider the percolation model

described as follows, for more details see [14, §2.2].

Review of the model.

Consider the hexagon tiling of the 2D triangular site lattice. A hexagon can be coloured blue, yellow,

or in specific cases split. The model at hand depends on particular local arrangements of hexagons.

Definition 4.1.2. A flower is the union of a particular hexagon with its six neighbors. The central
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Figure 4.1: The three allowed mixed states of the hexagons corresponding to single-bond occupancy
events. Figures courtesy of Binder, Chayes and Lei.

hexagon in each flower is called an iris and the outer hexagons are called petals. All hexagons which are

not flowers are called fillers.

Consider a simply connected domain Ω ⊂ C tiled by hexagons. A floral arrangement, denoted by ΩF ,

is a designation of certain hexagons as irises. The irises satisfy three criteria: (i) no iris is a boundary

hexagon, (ii) there are at least two non–iris hexagons between each pair of irises, and (iii) in infinite

volume, the irises have a periodic structure with 60◦ symmetries.

Now, the general description of the model is as follows.

Definition 4.1.3. Let Ω be a domain with floral arrangement ΩF .

• Any background filler sites, as well as the petal sites, are yellow or blue with probability 1
2 .

• In “most” configurations of the petals, the iris can be in one of five states: yellow, blue, or three

mixed states: horizontal split, 120◦ split, and 60◦ split with probability a, a, or s so that 2a+3s = 1

and a2 ≥ 2s2.

• The exceptional configurations, called triggers are configurations where there are three yellow

petals and three blue petals with exactly one pair of yellow (and hence one pair of blue) petals

contiguous. Under these circumstances, the iris is restricted to a pure form, i.e.,blue or yellow with

probability 1
2 .

Remark 4.1.4. The only source of (local) correlation in this model is triggering. All petal arrangements

are independent, all flowers are configured independently, and these in turn are independent of the

background filler sites.

Notice that if we take s = 0 in this one-parameter family of models we are reduced to the site percolation

on the triangular lattice. This model is shown to exhibit all the typical properties of the percolation

model at criticality, see [14, Theorem 3.10]. As well as, the verification of Cardy’s formula for this model,
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Figure 4.2: The multistep procedure by which the Exploration Process goes through a mixed hexagon.
Figures courtesy of Binder, Chayes and Lei.

see [14, Theorem 2.4].

Exploration Process

Given Ω as above. Consider a hexagon ϵ−tiling of C and assume that the location of all irises/flowers/fillers

are predetermined. Let Ωϵ be the union of all fillers and flowers whose closure lies in the interior of

Ω where ϵ is small enough so that both a and c are in the same lattice connected component. The

boundary ∂Ωϵ is the usual internal lattice boundary where if it cuts through a flower, the entire flower

is included as part of the boundary.

Admissible domains (Ωϵ, ∂Ωϵ, aϵ, cϵ) satisfy the following properties:

• Ωϵ contains no partial flowers.

• ∂Ωϵ can be decomposed into two lattice connected sets, c1 and c2, which consists of hexagons

and/or halves of boundary irises, one coloured blue and one coloured yellow such that aϵ and cϵ lie

at the points where c1 and c2 join and such that the blue and yellow paths are valid paths following

the connectivity and statistical rules of the model; in particular, the coloring of these paths do not

lead to flower configurations that have probability zero.

• aϵ and cϵ lie at the vertices of hexagons, such that of the three hexagons sharing the vertex, one

of them is blue, one of them is yellow, and the third is in the interior of the domain.

Remark 4.1.5. One can see that (Ωϵ, ∂Ωϵ, aϵ, cϵ) converges to (Ω, ∂Ω, a, c) in the Caratheodory sense

and one can find aϵ, cϵ which converge to a, c as ϵ→ 0.
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Let us now define the Exploration Process Xϵt. Let Xϵ0 = aϵ. Colour the new interior hexagons in

order to determine the next step of the Exploration Process according to the following rules:

• If the hexagon is a filler, colour blue or yellow with probability 1
2 .

• If the hexagon is a petal or iris, colour blue, yellow or mixed with the conditional distribution

given by the hexagons of the flower already determined.

• If another petal needs to be uncovered, colour it according to the conditional distribution given by

the iris and the other hexagons of the flower which have already been determined.

The Exploration Process Xϵt is determined from Xϵt−1 as follows:

• If Xϵt−1 is not adjacent to an iris, then Xϵt is equal to the next hexagon vertex entered when blue

is always to the right of the segment [Xϵt−1,Xϵt].

• If Xϵt−1 is adjacent to an iris, then the colour of the iris is determined by the above rules. The

exploration path then continues by keeping blue to the right until a petal is hit. The colour of

this petal is determined according to the proper conditional distribution and Xϵt is one of the two

possible vertices common to the iris and the new petal which keeps the blue region to the right of

the final portion of the segments joining Xϵt−1 and Xϵt.

Thus, at each step, we arrive at a vertex of a hexagon. For this Exploration Process we still maintain

the following properties.

Proposition 4.1.6 (Proposition 4.3, [8]). Let γϵ([0, t]) be the line segments formed by the process up until

time t, and Γϵ([0, t]) be the hexagons revealed by the Exploration Process. Let ∂Ωtϵ = ∂Ωϵ ∪Γϵ([0, t]) and

let Ωtϵ = Ωϵ\Γϵ([0, t]). Then, the quadruple (Ωtϵ, ∂Ω
t
ϵ,Xtϵ, cϵ) is admissible. Furthermore, the Exploration

Process in Ωtϵ from Xtϵ to cϵ has the same law as the original Exploration Process from aϵ to cϵ in Ωϵ

conditioned on Γϵ([0, t]).

Percolation satisfies the KS Condition.

It is well known that the Exploration Process produces in any critical percolation configuration

Ωϵ, the unique interface connecting aϵ to cϵ denoted by γϵ, i.e. the unique curve which separates the

blue connected cluster of the boundary from the yellow connected cluster of the boundary. Let PΩϵ

be the law of this interface. Let µϵ be the probability measure on random curves induced by the

Exploration Process on Ωϵ, and let us endow the space of curves with the sup-norm metric dist(γ1, γ2) =

inf
φ1,φ2

sup
t

|γ1(φ1(t))− γ2(φ2(t))| over all possible parameterizations φ1, φ2.
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The proof of the fact that the collection (PΩ : Ω admissible) satisfies the KS Condition follows

directly from [46, Proposition 4.13] since this generalized percolation model still satisfies Russo-Seymour-

Welsh (RSW) type correlation inequalities.

Remark 4.1.7. As long as a2 ≥ 2s2, then a restricted form of Harris-FKG property holds for all paths

and path type events, see [14, Lemma 6.2]. Since we have this essential ingredient in the RSW type

arguments, we are indeed free to use RSW sort of correlation inequalities.

Proposition 4.1.8 (Proposition 4.13 in [46]). The collection of the laws of the interface of the modified

bond percolation model described above on the hexagonal lattice.

ΣPercolation = {(Ωϵ, ϕ(Ωϵ),PΩϵ
) : Ωϵ an admissible domain} (4.1.1)

satisfies the KS Condition.

Proof. First, notice that for percolation, we do not have to consider stopping times. Indeed, by Propo-

sition 4.1.6 if γ : [0, N ] → Ωϵ ∪ {a, c} is the interface parameterized so that γ(k), k = 0, 1, · · · , N are

vertices along the path, then Ωϵ\γ(0, k] is admissible for any k = 0, 1, · · · , N and there is no informa-

tion gained during (k, k + 1). Also, the law of percolation satisfies the domain Markov property so the

law conditioned to the vertices explored up to time n is the percolation measure in the domain where

γ(k), k = 0, 1, · · · , n is erased. Thus, the family (4.1.1) is closed under stopping.

Since crossing an annuli is a translation invariant event for percolation, for any Ωϵ, we can apply

a translation and consider the annuli around the origin. Let Bn be the set of points on the triangular

lattice that are graph distance less than or equal to n from 0. Consider the annulus B9Nn\Bn for any

n,N ∈ N. We can consider concentric balls B3n inside the annulus B9Nn\Bn. Then for an open crossing

of the annulus B9Nn\Bn, there needs to be an open path inside each annulus An = B3n\Bn, A3n =

B9n\B3n, · · · etc. The probability that An contains an open path separating 0 from ∞ and A3n contains

a closed path separating 0 from ∞ are independent. Hence, by Russo-Seymour-Welsh (RSW) theory,

we know that there exists a q > 0 for any n

µϵ (open path inside An ∩ closed path in A3n both separating 0 from ∞) ≥ q2

Since a closed path in one of the concentric annuli prohibits an open crossing of B9Nn\Bn, we conclude

that

Pϵ (γ makes an unforced crossing of B9Nn\Bn) ≤ (1− q2)N ≤ 1

2
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for large enough N .

The observable is “almost” analytic.

Consider two addition marked points (or prime ends) b,d so that a,b,c,d are in cyclic order. Let

Ωn be the admissible domain described above at lattice scale n−1 to the domain Ω. More details of

the construction can be found in [8, §3 and §4] and [9, §4.2]. Furthermore, the boundary arcs can be

appropriately coloured and the lattice points an, bn, cn, dn can be selected. The main objects of study for

percolation is the crossing probability of the conformal rectangle Ωn from (an, bn) to (cn, dn), denoted

by Cn and C∞ its limit in the domain Ω, i.e., Cardy’s formula in the limiting domain. Geometrically,

Cn produces in any percolation configuration on Ωn, the unique interface connecting an to cn, i.e. the

curve separating the blue lattice connected cluster of the boundary from the yellow. Let us temporarily

forget the marked point an and consider the conformal triangle (Ωn; bn, cn, dn).

We will briefly recall the observable function introduced in [77] which we will denote by Sb, Sc, Sd.

For a lattice point z ∈ Ωn, Sd(z) is the probability of a yellow crossing from (cn, dn) to (dn, bn) separating

z from (bn, cn). Notice that Sd has boundary value 0 on (bn, cn) and 1 at the point dn. Sb and Sc are

defined similarly. We define the complexified function Sn := Sb+ τSc+ τ2Sd with τ = e2πi/3, called the

Carleson-Cardy-Smirnov (CCS) function.

The CCS functions Sn are not discrete analytic but are “almost” discrete analytic in the following

sense, see [10, §4]:

Definition 4.1.9 ((σ, ρ)−Holomorphic). Let Λ ⊆ C be a simply connected domain and Λϵ be the

(interior) discretized domain given as Λϵ :=
⋃
hϵ⊆Λ hϵ and let (Qϵ : Λϵ → C)ϵ↘0 be a sequence of

functions defined on the vertices of Λϵ. We say that the sequence (Qϵ) is (σ, ρ)–holomorphic if there

exist constants 0 < σ, ρ ≤ 1 such that for all ϵ sufficiently small:

1. Qε is Hölder continuous up to ∂Λϵ: There exists some small ψ > 0 and constants c, C ∈ (0,∞)

(independent of domain and ϵ) such that

(a) if zϵ, wϵ ∈ Λϵ \Nψ(∂Λϵ) such that |zϵ − wϵ| < ψ, then |Qϵ(zϵ)−Qϵ(wϵ)| ≤ c
(

|zϵ−wϵ|
ψ

)σ
and

(b) if zϵ ∈ Nψ(∂Λϵ), then there exists some w⋆ϵ ∈ ∂Λϵ such that |Qϵ(zϵ)−Qϵ(w⋆ϵ )| ≤ C
(

|zϵ−w⋆
ϵ |

ψ

)σ
.

2. For any simply closed lattice contour Γϵ,



Chapter 4. Applications 69

∣∣∣∣∮
Γϵ

Q dz

∣∣∣∣ =
∣∣∣∣∣∣
∑
hϵ⊆Λ′

ϵ

∮
∂hϵ

Q dz

∣∣∣∣∣∣ ≤ c · |Γϵ| · ϵρ, (4.1.2)

with c ∈ (0,∞) (independent of domain and ϵ) and Λ′
ϵ, |Γϵ| denoting the region enclosed by Γϵ and

the Euclidean length of Γϵ, respectively.

Proposition 4.1.10 (Proposition 4.3, [10]). Let Λ denote a conformal triangle with marked points (or

prime ends) b, c, d and let Λϵ denote an interior approximation (see [9, Definition 3.1]) of Λ with

bϵ, cϵ, dϵ the associated boundary points. Let Sϵ(z) denote the CCS function defined on Λϵ. Then for all

ϵ sufficiently small, the functions (Sϵ : Λϵ → C) are (σ, ρ)–holomorphic for some σ, ρ > 0.

Polynomial convergence of the observable function to its continuous counterpart.

Observe that Cn can be realized from Sd(an) as Cn = −2√
3
· Im[Sn(an)]. Since it is already known that

Sn converges to H : D → T , a conformal map to equilateral triangle T which sends (b, c, d) to (1, τ, τ2),

we can see that C∞ = −2√
3
Im[H(a)] (see, [77], [2], and [9]). Thus, when establishing a rate of convergence

of Cn to C∞, it is sufficient to show that there exists ψ > 0 such that

|Sn(an)−H(a)| ≤ Cψ · n−ψ

for some Cψ <∞ independent of the domain. Indeed, a polynomial rate of convergence is shown in [10,

Main Theorem]. This is a slight reformulation of the theorem in which we have that the constant ψ is

independent of the domain Ω. Indeed, a direct reconstruction of the proof in [10] gives this result.

Theorem 4.1.11. Let Ω be a domain with two marked boundary points (or prime ends) a and c. Let

(Ωn, an, cn) be its admissible discretization. Consider the site percolation model or the models introduced

in [14] on the domain Ωn. In the case of the latter we also impose the assumption that the boundary

Minkowski dimension is less than 2 (in the former, this is not necessary). Let γ be the interface between

a and c. Consider the stopping time T := inf{t ≥ 0 : γ enters a ∆-neighbourhood of c} for some

∆ > 0. Then there exists n0 < ∞ depending only on the domain (Ω; a, b, c, d) and T such that the

following estimate holds: There exists some ψ > 0 (which does not depend on the domain Ω) such that

Cn converges to its limit with the estimate

|Cn − C∞| ≤ Cψ · n−ψ,

for some Cψ <∞ provided n ≥ n0(Ω) is sufficiently large.
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Polynomial convergence of critical percolation on the triangular lattice.

Thus, by Proposition 4.1.8, Proposition 4.1.10, and Theorem 4.1.11, we can now apply Theorem 1.5.2

to obtain:

Theorem 4.1.12. Let γn be the percolation Exploration Process defined above on the admissible tri-

angular lattice domain Ωn. Let γ̃n be its image in (H; 0,∞) parameterized by capacity. There exists

stopping time T <∞ and n1 such that sup
n

sup
t∈[0,T ]

n1(Ωt) <∞. Then if n ≥ n1, there is a coupling of γn

with Brownian motion B(t), t ≥ 0 with the property that if γ̃ denotes the chordal SLE6 path in H,

P

{
sup
t∈[0,T ]

|γ̃n(t)− γ̃(t) | > n−u

}
< n−u

for some u ∈ (0, 1) and where both curves are parameterized by capacity.

Moreover, if Ω is an α-Hölder domain, then under the same coupling, the SLE curve in the image is

polynomially close to the original discrete curve:

P

{
sup
t∈[0,T ]

d∗
(
γn(t), ϕ−1(γ̃(t))

)
> n−v

}
< n−v

where v depends only on α and u.

Remark 4.1.13. We believe that modifications of the arguments in [10] could lead to a full convergence

statement.

Remark 4.1.14. Notice that under this modified percolation model, we still maintain the reversibility

of the exploration path. Let ω be a simple polygonal path from aδ to cδ. Suppose that the corresponding

path designate is the sequence

[H0,1, (F1, h
e
1, h

x
1),H1,2, (F2, h

e
2, h

x
2),H2,3, · · · , (FK , heK , hxK),HK,K+1]

where F1, · · · FK are flowers in Ωδ with hej and hxj are the entrance and exit petals in the jth flower and

for 1 ≤ j ≤ K − 1, Hj,j+1 is a path in the complement of flowers which connects hxj to hej+1. That is,

we are not viewing the microscopic description where we have to specifying how the path got between

entry and exit petals. With a small loss of generality we are also assuming that the path only visits the

flower once else we would have to specify the first entrance and exit petals, the second entrance and exit

petals, etc.

Let γδ be a chordal exploration process from aδ to cδ in Ωδ and γ̂δ be a chordal exploration process
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from cδ to aδ in Ωδ. Recall that all petal arrangements are independent, all flowers are configured inde-

pendently and these in turn are independent of the background filler sites. Thus the exploration process

generated by the colouring algorithm given previously, excluding colouring of flowers, is independent

and flowers are independent of background filler sites. Thus, by the colouring algorithm we have:

P(γδ = ω) =

(
1

2

)l(H0,1)

p1

(
1

2

)l(H1,2)

· · · pK
(
1

2

)l(HK,K+1)

where l(Hj,j+1) is the number of coloured hexagons in Hj,j+1 produced by the colouring algorithm on

the event γδ = ω and pj is the appropriate conditional probabilities on each flower of a petal or iris

given by the colouring algorithm. Notice that on the event γδ = γ̂δ = ω for any hexagon in Ωδ either

it is coloured by both the colouring algorithm for γδ and the colouring algorithm for γ̂δ or by neither.

Therefore, we have the following lemma:

Lemma 4.1.15. Suppose Ωδ is a simply connected domain in the δ-hexagonal lattice with a predetermined

flower arrangement. For any simple polygonal path ω from aδ to cδ we have

P(γδ = ω) = P(γ̂δ = ω)

This lemma directly implies the following lemma.

Lemma 4.1.16. For any simply connected domain Ωδ with predetermined flower arrangement, the

percolation exploration path from aδ to cδ in Ωδ has the same distribution as the time-reversal of the

percolation exploration path from cδ to aδ in Ωδ.

Question 4.1.17. Is it possible to use reversibility to extend the polynomial convergence for the whole

curve percolation exploration process?

4.2. Approximate harmonicity

The polynomial convergence of the functions HΩδ to the solution of the continuous Dirichlet problem

uniformly up to a thin δ1−η-strip away from the boundary on s-embeddings, as well as isoradial graphs,

is a new result presented in [18, §4.1]. This is a needed improvement from convergence results in the bulk

of Ωδ, i.e. O(1) away from the boundary ∂Ωδ. We prove a similar statement to [18, Theorem 4.1] with

a more general object. However, it becomes weaker in terms of the lattice. In the proof of the theorem,

we will apply the following standard result with Ω′ = Ωδint(η) and Ω = Ωδ, considered as subsets of C.
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Lemma 4.2.1. [18, Lemma A.2] Let Ω ⊂ C be a bounded simply connected domain, α ∈ (0, 2], and a

function h ∈ C2(Ω) ∩ C(Ω) satisfy the Dirichlet boundary conditions h = 0 at ∂Ω. If |∆h(u)| ≤ d−2+α
u

for all u ∈ Ω, then

|h(w)| ≤ cst(α) · d
1
5α
w · (diam(Ω))

4
5α for all w ∈ Ω,

where cst(α)) > 0 depend only on α.

Theorem 4.2.2. Let Ωδ ⊂ C be a bounded simply connected discrete domain drawn on an isoradial

graph. Assume that HΩδ is an “almost” harmonic function in (the bulk of) Ωδ, that is,

|∆δHΩδ |(v) = O
(
(δ/du)

2βd−1
u

)
with β > 1

2 , (4.2.1)

and that |HΩδ | ≤ 1 in Ωδ.

Let η ∈ (0, 1) and Ωδint(η) ⊂ C be (one of the connected components of) the δ1−η-interior of Ωδ.

Denote by hint(η) the harmonic continuation of the function HΩδ from the boundary to the bulk of the

domain Ωδint(η) (i.e., hint(η) is the solution of the continuous Dirichlet problem in Ωδint(η) with the boundary

values given by HΩδ).

Then, there exists an exponent α(η) > 0 such that, provided that δ is small enough (depending only

on η), the following estimate holds:

|HΩδ − hint(η)| = O(δα(η)) uniformly in Ωδint(η), (4.2.2)

where the implicit constant in the O-estimate depends only on the diameter of Ωδ.

Proof. Let ϕ0 ∈ C∞
0 (C) be a fixed positive symmetric function with ϕ0(u) = 0 for |u| ≥ 1

2 and∫
C ϕ0(w)dA(w) = 1. Let 0 < ϵ� η be a small parameter which will be chosen later. Define

du := dist(u, ∂Ωδ) and ρu := δϵ crad(u,Ωδ) � δϵdu � δ for u ∈ Ωδint(η)

where crad is the conformal radius of u in Ωδ. Recall that the mapping u 7→ crad(u,Ωδ) is smooth with

gradient uniformly bounded and second derivative bounded by O(d−1
u ) with absolute constants which

are independent of u and Ωδ, see [18, Lemma A.1].

Define the running mollifier ϕ(w, u) as

ϕ(w, u) := ρ−2
u ϕ0(ρ

−1
u (w − u)), u ∈ Ωδint(η),
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and mollify the function HΩδ as follows

H̃Ωδ(u) :=

∫
B(u,ρu)

ϕ(w, u)HΩδ(w)dA(w), (4.2.3)

where HΩδ is continued to Ωδint(η) in a piecewise constant way. By the a priori regularity of the functions

HΩδ , we get that

|H̃Ωδ(u)−HΩδ(u)| = O(ρu · d−1
u ) = O(δϵ) uniformly in Ωδint(η). (4.2.4)

In order to apply Lemma 4.2.1, we need a uniform estimate for ∆H̃Ωδ : That is,

Claim.

|∆H̃Ωδ(u)| = O(δpd−2−q
u ) +O(δ1−sd−3

u ) for all u ∈ Ωδint(η) (4.2.5)

where the exponents p, q, s ≥ 0 satisfy p ≥ q(1− η) and s < η.

Indeed, since ϕ(·, u) vanishes near the boundary of B(u, ρu)

∆H̃Ωδ(u) =

∫
B(u,ρu)

(∆uϕ(w, u))HΩδ(w)dA(w) u ∈ Ωδint(η)

Thus, we can write

∆H̃Ωδ(u) =

∫
HΩδ(w)∆wϕ(w, u)dA(w)︸ ︷︷ ︸

2

−
∫
HΩδ(u)[∆u −∆w](ϕ(w, u))dA(u)︸ ︷︷ ︸

1

and we will estimate 1 and 2 separately.

Estimate 1. We start with noting that HΩδ is a linear function in the ball Bρu(u) up to error O(ρu ·

(ρu/du)
βd−1

u ) = O(δϵ(1+β)) where β > 0 comes from the a priori Hölder exponent of ‖∇HΩδ‖. We use

that ‖∇HΩδ‖ ≤ |H
Ωδ |
d and ∇HΩδ is constant up to

(
ρ
d

)β · ‖∇HΩδ‖. Notice that for a symmetric mollifier
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ϕ0,

∫
B(u,ρu)

(∆wϕ(w, u))L(w)dA(w) =
∫
B(u,ρu)

ϕ(w, u)(∆L)(w)dA(w) = 0,∫
B(u,ρu)

(∆uϕ(w, u))L(w)dA(w) = ∆L(u) = 0.

By a straightforward computation we get that

|∆wϕ(w, u)−∆uϕ(w, u)| = O(δε · ρ−4
u ),

where we use that u 7→ ρu is smooth with gradient of order O(δϵ), second derivatives of order O(δϵd−1
u ) =

O(δ2ϵρ−1
u ), and the additional factor δϵ comes from the differentiation of ρu. Thus, this is gives a total

error of O(δϵδϵ(1+β)ρ−2
u ). So, we have

∆H̃Ωδ(u) =

∫
B(u,ρu)

(∆wϕ(w, u))HΩδ(w)dA(w) +O(δϵδϵ(1+β)ρ−2
u ).

Estimate 2. Cover B(u, ρu) by squares of size δ1−γ � δ1−η ≤ ρu where γ is chosen so that γ > 2ϵ

and 3(γ + ϵ) < η. (This is possible if ϵ is chosen to be less than 1
9η.) Notice that on each square HΩδ

can be approximated by a constant up to error O(δ1−γd−1
u ). Further, ∆wϕ(w, u) is a constant on each

square up to error O(δ3|D3ϕ(w, u)|). Thus, we can replace ∆wϕ(w, u) with ∆δϕ(w, u). Since it contains

O(δ−2ρ2u) terms of order O(δ3|D3ϕ(w, u)|), we get a total error of O(δ1−γd−1
u ρ−2

u ) = O(d1−γ−2ϵd−3
u ).

More precisely, we obtain

∫
B(u,ρu)

(∆wϕ(w, u))HΩδ(w)dA(w) =
∑

v: Λ(v)∈B(u,ρu)

[
∆δϕ(·, u)

]
(v)HΩδ(v)δ2 +O(δ1−γ−2ϵd−3

u ).

By the “discrete integration by parts” formula,

∫
B(u,ρu)

(∆wϕ(w, u))HΩδ(w)dA(w) =
∑

v: Λ(v)∈B(u,ρu)

ϕ(v, u)∆δHΩδ(v)δ2 +O(δ1−γ−2ϵd−3
u )

Thus, we get that

∆H̃Ωδ(u) = O(δ−2ρ2u · δ · ρ−2
u · δ2βd−1−2β

u ) = O(δ2β−1d−1−2β
u )

where we use our assumption that |∆δHΩδ |(v) = O
(
(δ/du)

2βd−1
u

)
. The proof of the claim follows by

choosing ϵ = min{ 1
9 ,

β
2(1+β)} · η where β is the Hölder exponent of ‖∇HΩδ‖.
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Thus, since we have du ≥ δ1−η for all w ∈ Ωδint(η), one can find α = α(η, p, q, s) > 0 such that

|∆H̃Ωδ(u)| = O(δαd−2+α
u ) uniformly for u ∈ Ωδint(η).

Let h̃ be the harmonic continuation of HΩδ from ∂Ωδint(η) to Ωδint(η), that is, the continuous solution to

the Dirichlet problem in Ωδint(η) with boundary value H̃Ωδ . By applying Lemma 4.2.1 to H̃Ωδ − h̃ in the

δ1−η interior Ωδint(η), one can derive from (4.2) that

|H̃Ωδ − h̃| = O(δα) uniformly in Ωδint(η)

where the additional coefficient depends only on α and diamΩδ. By the maximum principle, the esti-

mate (4.2.4) also implies that |h̃−h| = O(δε) in Ωδint(η). Combining this with (4.2.4) and (4.2) we obtain

the desired estimate (4.2.2) with the exponent min{α, ε} > 0.

At this point, we have a polynomial O(δβ/8) convergence of H to a harmonic function hm in the bulk

of Ωδ.

4.3. Harmonic Explorer

4.3.1. Setup and main results

Throughout this paper we will work with the isoradial lattice or equivalently rhombic lattices.

Definition 4.3.1. A planar graph Γ embedded in C is called δ-isoradial if each face is inscribed into

a circle of a common radius δ. If all the circle centers are inside the corresponding faces, then the dual

graph Γ∗ can be embedded in C isoradially with the same δ by taking the circle centers as vertices of

Γ∗.

The corresponding bipartite graph Λ = (V (Λ) = Γ ∪ Γ∗, E(Λ) = radii of the circles), called rhombic

lattice, have rhombi faces with sides of length δ. The set of rhombi centers is denoted by ♢ with the

mild assumption that the rhombi angles are uniformly bounded away from 0 and π.

4.3.2. Definitions and preliminaries

Let ΩδΓ ⊂ Γ be a simply connected domain with ∂ΩδΓ a simple closed curve. Let V0 := V (Γ)∩∂ΩδΓ be the

set of vertices in ∂ΩδΓ. Let v0, vend be the centers of two distinct edges of Γ on ∂ΩδΓ and A+
0 (respectively

A−
0 ) be the corresponding positively (respectively negative) oriented arc on ∂ΩδΓ from v0, vend. Define



Chapter 4. Applications 76

h0 : V0 → {0, 1} to be 1 on V0 ∩A+
0 and 0 on V0 ∩A−

0 . The following lemma shows we can generate the

discrete harmonic extension of h which is the expected value of h at the point at with a simple random

walk started at v hits V0.

Lemma 4.3.2. [11] For any planar graph H embedded in C (not necessarily isoradial), and A+, A− are

two connected curves consisting of edges and vertices of H such that A+ ∪ A− is a simple closed curve

and A+∩A−∩V (H) = ∅. Define h : (A+∪A−)∩V (H) → {0, 1} by h|V (H)∩A+ ≡ 1 and h|V (H)∩A− ≡ 0.

If we assign any probabilities to go from one vertex to one of its neighbors, the the harmonic extention

h of h induced by such probabilities is defined on any v ∈ V (H), starting from which the random walk

induced by such probabilities a.s. hits A+ ∪ A− within finite steps. h(v) is defined to be the expected

value of h at the point at which the random walk starting from v first hits A+ ∪A−. Then we have

1 = h(u1) ≥ h(u2) ≥ · · · ≥ h(un) = 0, (4.3.1)

where u1 ∈ A+, un ∈ A− are connected by an edge, and u1, u2, · · · , un are the vertices, ordered clockwise

or counterclockwise, of the face f ∈ F (H) inside the domain bounded by the curve A+ ∪A−.

Proof. For any 1 ≤ i ≤ n − 1, we will show that h(ui) ≥ h(ui+1) via coupling. For k = i or i + 1, let

(Ωk,P(Ωk), µk) denote the probability space with Ωk defined as the set of curves along
⋃
E(H)∪ V (H)

starting from uk and ending at its first encounter with A+ ∪ A−, and µk induced by the random walk.

Let Tk : Ωk → R be the random variable which gives 1 if the curve ends on A+ and 0 if the curve ends

on A−. Then h(uk) = E(Tk). Now, consider the larger probability space (Ω,P(Ω), µ) where we will

perform the coupling. Let Ω be the pairs of curves (λi, λi+1) ∈ Ωi ×Ωi+1 where if λi and λi+1 intersect

at a vertex v (after v they will coincide on all steps). Then define µ(λi, λi+1) to be the product of µi(λi)

with the probability induced by the random walk of the part of λi+1 from ui+1 to the first vertex at

which λi and λi+1 meet else µi(λi) × µi+1(λi+1). Let T̃i, T̃i+1 be the random variables on (Ω,P(Ω), µ)

such that T̃i(λi, λi+1) = Ti(λi), T̃i+1(λi, λi+1) = Ti+1(λi+1).

Let πk : Ω → Ωk be the projections for k = i, i + 1. Then we have that µ(π−1
k (λk)) = µk(λk) for

λk ∈ Ωk. Hence, T̃k and Tk have the same distributions. By topological considerations we can see that

for each (λi, λi+1) ∈ Ω, the event that λi+1 ends on A+ implies the event that λi ends on A+. Therefore

h(ui) = E[Ti] = E[T̃i] ≥ E[T̃i+1] = E[Ti+1] = h(ui+1).

The Harmonic Explorer is a random interface generated dynamically as follows: begin the path γ at

an edge separating the left and right boundary components; when γ hits a black face, it turns right, and

when it hits a white face, it turns left. Each time it hits a face f whose colour has yet to be determined,
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we perform a simple random walk on the space of faces beginning at f and let f assume the colour of

the first black or white face hit by that walk. In other words, we colour black with probability equal

to the value at f of the function which is equal to 1 on the black faces and 0 on the white faces and is

discrete harmonic at the undetermined faces. That is, the harmonic explorer H(Ωδ
Γ,v0,vend)

is a random

simple path from v0 to vend in ΩδΓ defined as follows. Let X1, X2, · · · be i.i.d. random variables chosen

uniformly in the interval [0, 1]. These are the coin flips we will use to define the model. Let f0 ⊂ ΩδΓ be

the face of the isoradial graph Γ whose boundary contains v0. By Lemma 4.3.2, there is a unique pair

of consecutive vertices uk and uk+1 of the face f0 with v0 ∈ f0 such that

1 = h0(un) ≥ · · · ≥ h0(uk+2) ≥ h0(uk+1)

≥ X1 ≥ h0(uk) ≥ h0(uk−1) ≥ · · · ≥ h0(u1) = 0

Define V1 := V0\{u1, · · · , un} and h1 : V1 → R by h1|V0 = h0 and h1(un) = · · · = h1(uk+1) = 1,

h1(uk) = · · · = h1(u1) = 0. We let v1 := 1
2 (uk + uk+1). This defines the first step of the harmonic

explorer. If v1 6= vend, define the subgraph Ωδ1 of ΩδΓ such that int(Ωδ1) is the connected component

whose boundary contains v1 and int(Ωδ1) = int
(
ΩδΓ\face u0u1 · · ·un

)
. The process continues inductively.

Assuming i ≥ 1 and vi /∈ ∂ΩδΓ. Let fi be the face of Γ containing vi but not vi+1. Then by Lemma 4.3.2

again, there is a unique pair of consecutive vertices uk and uk+1 of the face fi with vi ∈ f i such that

1 = hi(un) ≥ · · · ≥ hi(uk+2) ≥ hi(uk+1)

≥ Xi+1 ≥ hi(uk) ≥ hi(uk−1) ≥ · · · ≥ hi(u1) = 0

Then define Vi+1 := Vi∪{u1, u2, · · · , un} and hi+1 : Vi+1 → R by hi+1|Vi = hi, hi+1(un) = · · ·hi+1(uk+2) =

hi+1(uk+1) = 1, hi+1(uk) = · · ·hi+1(u2) = hi+1(u1) = 0. Let vi+1 : 1
2 (uk + uk+1). If vi+1 6= vend, define

the subgraph Ωδi+1 of Ωδi such that int(Ωδi+1) is the connected component, whose boundary contains

vi+1, of int(Ωδi \ face u0u1 · · ·un).

One can easily verify that this procedure terminates when vn = vend for some n <∞. Let N denote

the termination time, i.e. vN = vend. We define the Harmonic Explorer on isoradial lattices to be

the random curve from v0 to vend, connected by line segments from vi and vi+1 to the center of the

circumscribed circle of the face f ∈ F (ΩδΓ) with vi, vi+1 ∈ f , for 0 ≤ i ≤ N − 1. Thus, the Harmonic

Explorer is a simple path from v0 to vend.

Lemma 4.3.3. [11] Recall the harmonic extension hn of hn defined above. For any v ∈ V (ΩδΓ), hn(v)

is a martingale and hN (v) ∈ {0, 1}.
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Proof. Given X1, X2, · · · , Xn. Let u1, u2, · · ·um be the vertices of the face f ∈ F (ΩδΓ) such that vn ∈ f .

Then hn+1(ui) = 1 with probability hn(ui) and hn+1(ui) = 0 with probability 1−hn(ui), for 1 ≤ i ≤ m.

So

E[hn+1(ui)|X1, · · · , Xn] = hn(ui)

for 1 ≤ i ≤ m. Thus by induction,

E[hn+1(v)|X1, · · · , Xn] = hn(v)

for v ∈ Vn+1. Since hn is the harmonic extension of hn|Vn+1
, and hn+1 is the harmonic extension of

hn+1|Vn+1
, and the fact that the value of the harmonic extension of any function on v ∈ V (ΩδΓ) is a linear

combination, which only dependents on v, of the value of the function on ∂ΩδΓ ∩ V (ΩδΓ), we get that

E[hn+1(v)|X1, · · · , Xn] = hn(v)

for v ∈ V (ΩδΓ). Therefore hn(v) is a martingale for v ∈ V (ΩδΓ). Then as A+
N and A−

N are closed simple

curves, we get hN (v) ∈ {0, 1}.

4.3.3. Harmonic explorer satisfies the KS condition

The result that the harmonic explorer satisfies the KS Condition for the hexagonal lattice appears in [74,

Proposition 6.3]. Indeed, it is written in general provided the lattice has a weak Beurling-type estimate.

We need the following estimate which is a discrete version of the classical Beurling estimate with the

exponent 1
2 replaced by some small positive constant β, see [20, Proposition 2.11].

Proposition 4.3.4 (Weak Beurling-type Estimates). There exists an absolute constant β > 0 such that

for any simply connected discrete domain ΩδΓ, point u ∈ IntΩδΓ and some part of the boundary E ⊂ ΩδΓ

one has that the discrete harmonic measure ωδ(u;E; ΩδΓ) satisfies the following bound

ωδ(u;E; ΩδΓ) ≤ const

[
dist(u; ∂ΩδΓ)

distΩδ
Γ
(u;E)

]β

where distΩδ
Γ

denotes the distance inside ΩδΓ.

Suppose that ΩδΓ is an admissible domain and generate hΩδ
n
(v) via the harmonic explorer process

defined previously. Recall that this model has the special property that the values of the harmonic

functions Mn = hΩδ
n
(v) for fixed v ∈ Ωδn but varying Ωδn = ΩδΓ\γ(0, n] is a martingale with respect to
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the σ-algebra generated by the coin flips (equivalently by the domains (Ωδn) or the curves), see Lemma

4.3.3. Due to this the harmonic observables

(
hΩδ

n
(v)
)
v∈Ωδ

Γ,n=0,1,··· ,N

provide a method to check the KS Condition. Indeed, we will give an idea of the proof. Let ΩδΓ be an

admissible domain. Consider the annulus A = B(z0, R)\B(z0, r). Let V+ be the vertices in A+
0 ∩B(z0, 3r)

that are disconnected from vend by

AΩδ

=

z ∈ ΩδΓ ∩A

∣∣∣∣∣∣∣
the connected component of z ∈ ΩδΓ ∩A

does not disconnect v0 from vend ∈ ΩδΓ


and let the corresponding part of AΩδ be Aδ+. Let M̃n =

∑
v∈V+

h̃Ωδ
n
(v) where h̃Ωδ

n
, v ∈ V+ is the

harmonic measure of A−
0 seen from v and is the average value of hΩδ

n
among the neighbours of v. By

Lemma 4.3.3, the key observation is that (M̃n) is a martingale. Using the weak-Beurling estimate stated

above, we get that M̃0 = O
((

r
R

)∆) for some ∆ > 0 and on the event of crossing one of the AΩδ

+ , it

increases to O(1). Thus, a martingale stopping argument gives that the probability of the crossing event

is O
((

r
R

)∆).
Proposition 4.3.5. [74, Proposition 6.3]. The family of harmonic explorers on isoradial graphs staisfies

the KS Condition.

4.3.4. Harmonic explorer observable convergence

Recall that the harmonic explorer h is by definition a discrete harmonic function. Thus, we immediately

deduce from Theorem 4.2.2 the polynomial convergence of the harmonic explorer uniformly in Ωδint(η).

Corollary 4.3.6. Let hδint(η) be the solution to the continuous Dirichlet boundary value problem in Ωδint(η)

such that hδ = hΩδ at ∂Ωδint(η) where h is the harmonic function defined by the harmonic explorer process

given above. Then there exists α(η) > 0 such that, provided δ is small enough (depending only on η) so

that the functions are uniformly (with respect to both Ωδ and δ) close:

|hΩδ − hδint(η)| = O(δα(η)) uniformly in Ωδint(η)

where the implicit constant only depends on the diameter of Ωδ.

Let ΩδΓ ⊂ Γ be a simply connected domain with ∂Ωδ a simple curve. Assume the setup and notation
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of Section 4.3.2. Let γ : [0, N ] → ΩδΓ ∪{v0, vend} be the harmonic explorer path parameterized in such a

way that γ(n) = vn and proportional to arc length between γ(n) and γ(n+1) for n ∈ {0, 1, · · · , N − 1}.

Let ϕ : Ωδ → H ∪ {∞} be a conformal map onto the upper half plane H such that ϕ(A+
0 ) = (0,∞),

ϕ(A−
0 ) = (−∞, 0), ϕ(v0) = 0, ϕ(vend) = ∞. Note that ϕ is unique only up to positive rescaling. Let

p0 = ϕ−1(i).

As in [74], when considering the limiting properties, instead of letting δ → 0, we consider ρ =

ρ(ΩδΓ, ϕ) := dist(p0, ∂Ω
δ) → ∞. For j ∈ [0, N ], let Ω̃j := ΩδΓ\γ[0, n] and ϕj : Ω̃j → H be the conformal

map normalized by ϕj ◦ ϕ−1(z)− z → 0 as z → ∞ in H. Now, we have uniform polynomial closeness of

the approximation of hj by a continuous harmonic function.

Lemma 4.3.7. Given any ϵ ∈ (0, 1), there is an r0(ϵ) > 1 such that for every u ∈ ΩδΓ, any j < N and

any r > r0(ϵ) if dist(v, ∂Ω̃j) > r > ϵdiam(ΩδΓ) then

|hj(v)− h̃(ϕj(v)−W (tj))| < O(r−α) (4.3.2)

where h̃(z) = 1− (1/π) arg(z) and the implied constant only depends on the diameter of Ωδ.

Proof. Observe that h̃ : H → (0, 1) is a harmonic function with boundary values 0 on (−∞, 0) and 1 on

(0,∞). Since W (tj) = ϕj(γ(j)), z 7→ h̃(ϕj(z)−W (tj)) is harmonic in Ω̃j , and has boundary values 0 on

A−
0 and the “right side” of γ[0, j] and 1 on A+

0 and the “left side” of γ[0, j].

Without loss of generality, we can assume 0 ∈ ΩδΓ. Assume dist(v, ∂Ω̃j) > r > ϵdiam(ΩδΓ). Then

by scaling the coordinate system by a factor of r′, we manage to make sure that in the new coordinate

system, dist(v, ∂Ω̃j) > δ1−η, δ = 1
r′ and ΩδΓ ⊂ B(0, R) for some constant R. So we can apply Corollary

4.3.6 to get that the function hΩδ and hδ are uniformly close to each other (with respect to Ωδ and δ) in

Ωδint(η). By the a priori Hölder estimates for the gradient of hΩδ , we have the following uniform estimate

on ∂Ωδint(η):

hδ(u) = hΩδ(u) = O

(
δη

(distΩδ(u,A−
0 )

η

)
if dist

Ωδ
(u,A+

0 ) = δ1−η

and similarly

hδ(u) = hΩδ(u) = 1−O

(
δη

(distΩδ(u,A+
0 )
η

)
if dist

Ωδ
(u,A−

0 ) = δ1−η.

Thus, by applying the Beurling estimate for continuous harmonic functions, one can deduce that hδ

and hmΩ(·, A−
0 ) must be uniformly (in δ) close to 0 near the boundary arc A+

0 and close to 1 near the

complementary arc A−
0 . Hence we have convergence of hδ to hmΩ(·, A−

0 ) as δ → 0. We can apply this
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to h̃ to get (4.3.2).

4.3.5. Harmonic explorer convergence rate for paths

Recall the notation of the last section. Let ΩδΓ ⊂ Γ be a simply connected domain with ∂Ωδ a simple

curve. Assume the setup and notation of Section 4.3.2. Let γ : [0, N ] → ΩδΓ∪{v0, vend} be the harmonic

explorer path parameterized in such a way that γ(n) = vn and proportional to arc length between γ(n)

and γ(n+ 1) for n ∈ {0, 1, · · · , N − 1}. Let ϕ : Ωδ → H ∪ {∞} be a conformal map onto the upper half

plane H such that ϕ(A+
0 ) = (0,∞), ϕ(A−

0 ) = (−∞, 0), ϕ(v0) = 0, ϕ(vend) = ∞. Note that ϕ is unique

only up to positive rescaling. Let p0 = ϕ−1(i). Let γϕ be the path ϕ◦γ, parameterized by capacity from

∞ in H, and γ̃ be the SLE4 path in H.

Let d∗(·, ·) be the metric on H ∪ {∞} defined by d∗(z, w) = |Ψ(z) − Ψ(w)| where Ψ(z) = z−i
z+i maps

H ∪ {∞} onto D. If z ∈ H then d∗(zn, z) → 0 is equivalent to |zn − z| → 0 and d∗(zn,∞) → 0 is

equivalent to |zn| → ∞. This is a metric corresponding to mapping (H, 0,∞) to (D,−1, 1) which is

convenient because it is compact. By Proposition 4.3.5, Lemma 4.3.7, and Lemma 3.4.1, we can apply

Theorem 1.5.2 to conclude that: As ρ → ∞, the law of γϕ converges polynomially to the law of the

SLE4 path γ̃, with respect to uniform convergence in the metric d∗.

Theorem 4.3.8. For any T ≥ 1 and ϵ ∈ (0, 1) there is some R = R(ϵ, T ) such that if ρ > R then there

is a coupling of γϕ and γ̃ such that

P
{

sup
0≤t≤T

d∗(γ
ϕ(t), γ̃(t)) > R−u

}
< R−u

for some u ∈ (0, 1) under the assumption ρ > ϵ diam(ΩδΓ).

Moreover, if Ω is an α-Hölder domain, then under the same coupling the SLE curve in the image is

polynomially close to the original discrete curve:

P

{
sup
t∈[0,T ]

d∗
(
γ(t), ϕ−1(γ̃(t))

)
> R−v

}
< R−v

where v depends only on α and u.
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4.4. Ising Model

4.4.1. Setup and main results

Throughout this paper we will work with the isoradial lattice or equivalently rhombic lattices. In this

section, we review some of the basics of discrete complex analysis on isoradial graphs for more details

see [20] and [21].

Definition 4.4.1. A planar graph Γ embedded in C is called δ-isoradial if each face is inscribed into

a circle of a common radius δ. If all the circle centers are inside the corresponding faces, then the dual

graph Γ∗ can be embedded in C isoradially with the same δ by taking the circle centers as vertices of

Γ∗.

The corresponding bipartite graph Λ = (V (Λ) = Γ ∪ Γ∗, E(Λ) = radii of the circles), called rhombic

lattice, have rhombi faces with sides of length δ. The set of rhombi centers is denoted by ♢ with the

mild assumption that the rhombi angles are uniformly bounded away from 0 and π: that is, all these

angles belong to [ϵ, π − ϵ] for some fixed ϵ > 0.

For a function H defined on vertices of Λ, the discrete Laplacian is defined as follows

[∆δH](u);=
1

µδΓ(u)

∑
us∼u

tan θs[H(us)−H(u)]

where µδΓ(u) = 1
2δ

2
∑
us∼u sin 2θs. For any u ∈ Γ, we enumerate counterclockwise the neighbours by

1, 2, · · · , s, s+1, · · · , n and the corresponding dual neighbours w1, · · · , ws, ws+1, · · · , wn. Then µδΓ(u) is

the area of the polygon formed by w1w2 · · ·wn with u as the center and θs is the angle formed by uws

and uus. H is discrete harmonic in ΩδΓ if ∆δH = 0 for all interior vertices of ΩδΓ. As with the continuous

case, the discrete harmonic functions satisfy (uniformly with respect to δ and the structure ♢) a version

of the Harnack Lemma.

Proposition 4.4.2. [21, Proposition A.4] Let u0 ∈ Γ and H : BδΓ(u0, R) → R be a nonnegative discrete

harmonic function. Then

1. for u2, u2 ∈ BδΓ(u0, r) ⊂ IntBδΓ(u0, R)

exp

[
−const · r

R− r

]
≤ H(u2)

H(u1)
≤ exp

[
const · r

R− r

]

2. and for any u1 ∼ u0

|H(u1)−H(u0)| ≤ const · δH(u0)

R
.
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The notion of s-holomorphicity appears naturally for holomorphic fermions in the Ising model, see

[21, §2].

Definition 4.4.3. Let Ωδ♢ ⊂ ♢ be a discrete domain. The function F : Ωδ♢ → C is spin-holomorphic or

s-holomorphic if for each pair of neighbours z0, z1 ∈ Ωδ♢, z0 ∼ z, the following projections of two values

of F are equal:

Proj[F (z0); [i(w1 − u)]−
1
2 ] = Proj[F (z1); [i(w1 − u)]−

1
2 ]

or equivalently,

F (z1)− F (z0) = −i(w1 − u)δ−1 · (F (z1)− F (z0))

where (w1u), u ∈ Γ, w1 ∈ Γ∗ is the common edge of rhombi z0, z1.

Remark 4.4.4. The notion of s-holomorphic is stronger than the usual discrete holomorphicity, see [21,

§3].

Given an s-holomorphic function F , there is an associated primitive

HF =

∫ δ

(F (z))2dδz : ΩδΛ → C

defined simultaneously on Γ and Γ∗ (up to an additive constant) by:

H(u)−H(w1) := 2δ · |Proj[F (zj); [i(w1 − u)]−
1
2 ]|2, u ∼ w1

where (uw1), u ∈ Γ, w1 ∈ Γ∗ is the common edge of two neighbouring rhombi z0, z1 ∈ ♢ and for j = 0, 1

gives the same value.

Proposition 4.4.5. [21, Proposition 3.6 and 3.11] Let Ωδ♢ be a simply connected discrete domain. If

F : Ωδ♢ → C is an s-holomorphic function then

1. The function HF :=
∫ δ

(F (z))2dδz : ΩδΛ → C is well-defined up to an additive constant. HF is

discrete subharmonic on Γ and superharmonic on Γ∗.

2. For any neighbourhood v1, v2 ∈ ΩδΓ ⊂ Γ or v1, v2 ∈ ΩδΓ∗ ⊂ Γ∗ the identity

HF (v2)−HF (v1) = Im

[
(v2 − v1)

(
F (

1

2
(v1 + v2))

)2
]

holds.
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3. (Harnack Lemma.) Take v0 ∈ Λ = Γ ∪ Γ∗. If HF ≥ 0 in BδΛ(v0, R) then

HF (v1) ≤ const. ·HF (v0) for any v1 ∈ BδΛ
(
v0,

1

2
r

)
.

There is the following regularity of s-holomorphic functions, see [21, Theorem 3.12].

Theorem 4.4.6. For a simply connected domain Ωδ♢, s-holomorphic function F and associated primitive

HF =
∫ δ

(F (z))2dδz : ΩδΛ → C defined as above. Let z0 ∈ IntΩδ♢ be further than δ from the boundary:

d = dist (z0; ∂Ω
δ
♢) ≥ constant · δ and set M = maxv∈Ωδ

♢
|H(v)|. Then

|F (z0)| ≤ const · M
1
2

d
3
2

· δ

and for neighbourhood z1 ∼ z0

|F (z1)− F (z0)| ≤ const · M
1
2

d
3
2

· δ.

Further, the subharmonic function HF |Γ and superharmonic function HF |Γ∗ are uniformly close to each

other in Ωδ, HF |Γ −HF |Γ∗ = O
(
δMd
)

and so |∆δHF | = O
(
δMd3
)
.

4.4.2. Review of the Model

Suppose that G = (V (G), E(G)) is a finite graph, possibly a multigraph. For any q > 0 and p ∈ (0, 1),

define a probability measure on {0, 1}E(G) by

µp,qG (ω) =
1

Zp,qG

(
p

1− p

)o(ω)
qc(ω)

where o(ω) is the number of edges, c(ω) is the number of connected components in ω, and Zp,qG is the

normalizing constant which makes the measure a probability measure. This random edge configuration

is called the Fortuin–Kasteleyn model (FK).

Let Ω be a bounded simply connected domain and a, b ∈ ∂Ω be two distinct boundary points (e.g.

two degenerate prime ends). Approximate Ω by subgraphs of the δ-isoradial lattice successively refined

as δ → 0. Let Ωδ be such a simply connected approximation and aδ, bδ be two vertices near a, b on the

bounardy ∂Ωδ. Following in clockwise order, there are two arcs (aδbδ) and (bδaδ). Consider Dobrushin

boundary conditions on (Ωδ; aδ, bδ): that is, free boundary conditions on (aδbδ) and wired on (bδaδ). It is

easiest to view configurations together with their dual counterparts defined on dual graph G∗. The dual

model is again the critical FK-Ising model with boundary conditions dual-wired on (aδbδ) and dual-free
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on (bδaδ). The γδ be the unique interface that separates the FK cluster on G connected with (bδaδ) and

the FK cluster on G∗ connected with (aδbδ).

Loop representation of the model on isoradial graphs and holomorphic fermion

Let Ωδ♢ ⊂ ♢ be a simply connected discrete domain composed of inner rhombi with z ∈ IntΩδ♢

and boundary half rhombi ζ ∈ ∂Ωδ♢ with two marked boundary points aδ, bδ and Dobrushin boundary

conditions: ∂Ωδ♢ consists of a “white” arc aδwbδw, a “black” arc bδbaδb and two edges [aδba
δ
w][b

δ
bb
δ
w] of Λ.

Without loss of generality, we can assume that bδb − bδw = iδ. The set of configurations is obtained in the

following way: For each innter rhombus z ∈ IntΩδ♢, choose two possibilities to connect its sides (across

the white vertices or across the black vertices). There is only one choice for boundary half-rhombic. Due

to the boundary conditions, each configuration consists of loops and one interface γδ running from aδ

to bδ. The partition function of the critical FK-Ising model is given by

Z =
∑

config.

√
2
#(loops) ∏

z∈IntΩδ
♢

sin
1

2
θconfig(z)

where θconfig(z) is either θ if the connectors inside the rhombus z connect across the white vertices and

θ∗ = π
2 − θ else.

Definition 4.4.7. Let ξ = [ξbξw] be some inner edge of Ωδ♢ where ξb ∈ Γ, ξw ∈ Γ∗. The holomorphic

fermion is defined as

F δ(ξ) = F δ(Ωδ;aδ,bδ)(ξ) := (2δ)−
1
2E[χ(ξ ∈ γδ) · e− i

2 (winding(γδ;bδ⇝ξ))]

where χ(ξ ∈ γδ) is the indicator function of the event that the interface intersects ξ and winding(γδ; bδ ⇝

ξ) = winding(γδ; aδ ⇝ ξ)− winding(γδ; aδ ⇝ bδ) is the total turn of γδ measured in radians from bδ to

ξ.

Since the winding winding(γδ; bδ ⇝ ξ) is independent of the beginning of the interface, we can

immediately deduce the martingale property for F δ.

Lemma 4.4.8 (Martingale Property). For each ξ, F δ
(Ωδ\[aδγδ

1 ,···γδ
j ];γ

δ
j ,b

δ)
(ξ) is a martingale with respect to

the growing interface (aδ = γδ0 , γ
δ
1 , · · · , γδj , · · · ) up to stopping time when γδ hits ξ or ξ becomes separated

from bδ by the interface.

Further, F δ can be extended to the centers of rhombi z ∈ Ωδ♢. The following proposition essentially

gives that F δ are spin holomorphic.
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Proposition 4.4.9. [21, Proposition 2.2] Let z ∈ IntΩδ♢ be the center of some inner rhombus u1w1u2w2.

Then, there exists a complex number F δ(z) such that

F δ([ujwk]) = Proj

[
F δ(z); [i(wk − uj)]−

1

2

]
, j, k = 1, 2.

4.4.3. FK Ising satisfies KS Condition

For each admissible domain (Ω; a, b) define a conformal and onto map ϕΩ : (Ω; a, b) → (D;−1, 1) where

ϕΩ(a) = −1 and ϕΩ(b) = 1.

Proposition 4.4.10. Let PΩδ be the law of the critical FK model interface in Ωδ, i.e. PΩδ is the law of

γ under µpsd,2
Ωδ . Then the family

ΣFKIsing = {(ϕΩδ ,PΩδ) : δ ↘ 0}

satisfies KS Condition.

Remark 4.4.11. In [46, Proposition 4.3 and 4.7], it is shown for the square lattice the critical FK model

interface with parameter q ≥ 1 satisfies KS Condition provided the statement in Corollary 4.4.13 holds.

In fact, KS Condition is verified for 1 ≤ q ≤ 4 in [27] based on estimates on crossing probabilities. The

proof follows similarly for isoradial graphs which we include for completeness of the exposition.

The following result on crossing probabilities is the main tool in showing that the FK model satisfies

the KS Condition.

Theorem 4.4.12. [21, Theorem C] Let discrete domains (Ωδ; aδ, bδ, cδ, dδ) with alternating (wired/free/wired/free)

boundary conditions on four sides approximate some continuous topological quadrilateral (Ω; a, b, c, d) as

δ → 0. Then the probability of an FK cluster crossing between two wired sides has a scaling limit, which

depends only on the conformal modulus of the limiting quadrilateral and is given for the half-plane by

p(H; 0, 1− u, 1,∞) =

√
1−

√
1− u√

1−
√
u+

√
1−

√
1− u

, u ∈ [0, 1].

Thus, we have the following consequence.

Corollary 4.4.13. We say that (Ω; a, b, c, d) is crossed by an open path if there is an open path which

connects the wired arcs, denote this event by O(Ω). If (Ω; a, b, c, d) is nondegenerate, then there are ϵ > 0

and 0 < δ0 <∞ such that

ϵ < Pδ(O(Ωδ)) < 1− ϵ
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for any 0 < δ < δ0 where Pδ is the probability measure µpsd,2
Ωδ .

Proof of KS Condition. Fix a Dobrushin domain (ΩδΓ; a
δ, bδ) and consider the exploration path γδ in the

loop representation on Ωδ♢. Let A = A(z, r, R) be an annulus. For stopping time τ , fix a realization of

γδ[0, τ ] and consider slit Dobrushin domain (ΩδΓ\γδ[0, τ ]; cδ, bδ) where cδ is the vertex of Γ bordered by

the last edge of γδ[0, τ ]. Let Aτ ⊂ Ωδ♢ be such that Aτ := if ∂B(z, r) ∩ ∂(Ωδ♢\γδ[0, τ ]) and

Aτ =


z ∈ A ∩ (Ωδ♢\γδ[0, τ ]) such that the connected component of z

in A ∩ (Ωδ♢\γδ[0, τ ]) does not disconnect γτ from b ∈ Ωδ♢\γδ[0, τ ]

 .

Notice that there are three options for the connected component C: (i) ∂C intersects both boundary

arcs ∂♢
cδbδ

and ∂♢
bδcδ

, (ii) ∂C intersects ∂♢
bδcδ

but not ∂♢
cδbδ

, and (iii) ∂C intersects ∂♢
cδbδ

but not ∂♢
bδcδ

.

It is topologically impossible to have component C of type (i). Indeed, assume C exists. Let P be a

self-avoiding path in C going from ∂♢
bδcδ

to ∂♢
cδbδ

. Then cδ♢ and bδ♢ must be on two different sides of P in

(Ωδ♢\γδ[0, τ ])\P . Thus, C is not a part of Aτ which is a contradiction. So, it is safe to assume that C is

either type (ii) or (iii). Now, consider the interpretation in terms of graphs.

Let S be a subgraph of ΩδΓ\γδ[0, τ ] composed of the union of connected components (viewed on

isoradial graph) of type (ii). This is a subset of Aτ . Also, conditioned on γδ[0, τ ], the boundary

conditions are wired on ∂S\∂Aτ . Thus, conditioned on γδ[0, τ ] and the configuration outside A(z, r, R),

the configuration ω in S dominates the configuration ω′|S where ω′ follows the law of a random cluster

model in A(z, r, R) with free boundary conditions. So, if there is an open circuit in ω′ surrounding

B(z, r) in A(z, r, R) then the restriction of this path to S is also an open path in ω which disconnected

B(z, r) from B(z,R) in S. Hence, since the exploration path γδ slides between open edges and dual-open

dual-edges, for γδ[τ,∞] to cross Aτ inside S there would be a dual-open dual-path from outer to inner

part of A∗
τ . Thus, γδ[τ,∞] cannot cross Aτ inside S.

Theorem 4.4.12 says that this open circuit in ω′ is bounded below by constant c > 0 (independent of

δ). Thus, γδ[τ,∞] cannot cross Aτ inside S with probability larger than c uniformly on the configuration

outside Aτ .

Let S∗ be the subgraph of ΩδΓ∗\γδ[0, τ ] given by the union of the connected components (seen as

dual graph Γ∗) of type (iii). Similarly as above, the exploration path γδ[τ,∞] cannot cross A∗
τ inside S∗

with probability c > 0.

Combining it altogether, γδ[τ,∞] cannot cross Aτ with probability c2. By Corollary 4.4.13 for fixed

ratio R/r and since using this in several concentric annuli gives the result for larger annulus, c can be

taken to be equal to 1 − (1 − ϵ)⌊log2(R/r)⌋. Since R/r ≥ C, it is possible to guarantee that c2 ≥ 1/2 by
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choosing C large enough.

4.4.4. FK Ising observable convergence

In this section, we rephrase the approximate harmonicity up to a thin strip from the boundary as in

the context of [18, [Theorem 4.1]. This theorem in [18] is written for S-graphs but is even new in the

isoradial context.

Proposition 4.4.14. Let Ωδ ⊂ C be a bounded simply connected discrete domain drawn on isoradial

graph. Assume that F is an s-holomorphic function in (the bulk of) Ωδ and that |HF | ≤ 1 in Ωδ where

HF is constructed from F as in Section 4.4.1.

Let η ∈ (0, 1) and Ωδint(η) ⊂ C be (one of the connected components of) the δ1−η-interior of Ωδ. Denote

by hint(η) the harmonic continuation of the function HF from the boundary to the bulk of the domain

Ωδint(η) (i.e. hint(η) is the solution of the continuous Dirichlet problem in Ωδint(η) with boundary values

given by HF ). Then there exists an exponent α > 0 such that provided δ is small enough (depending

only on η), the following estimate holds:

|HF − hint(η)| = O(δα(η)) uniformly in Ωδint(η)

Furthermore, there exists an exponent β(η) > 0 such that

|F (z)−
√
Φ′(z)| = O(δβ(η)) uniformly in Ωδint(η)

where Φ denotes the conformal mapping from Ω onto the strip R × (0, 1) such that a, b are mapped to

∓∞ and the explicit constants in the O-estimates depends only on the diameter of Ωδ.

Proof. Let (Ωδ; aδ, bδ) be a discrete domain with two marked boundary points aδ, bδ. Let 0 < ϵ� η be

a small parameter as chosen in the proof of Theorem 4.2.2. Define

du := dist(u, ∂Ωδ) and ρu := δϵ crad(u,Ωδ) � δϵdu � δ for u ∈ Ωδint(η)

where crad is the conformal radius of u in Ωδ. Then by Theorem 4.4.6, we get the estimate:

|∆HF |(u) = O

(
δ2

d3u

)
uniformly for u ∈ Ωδint(η)
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Recall that HF satisfies the 0/1 Dirichlet boundary conditions and HF ∈ [0, 1] everywhere in Ωδ due to

the maximum principle. Thus, we can apply Theorem 4.2.2 to deduce that

|HF − hint(η)| = O(δα(η))

for some α(η) > 0 and constant depending only on diamΩδ.

By construction of the function HF , its gradient is bounded by |F |2. From uniform crossing estimates

of annulus, one obtains

|F (z)| ≤ O

(
δ−1/2

[
δ

dist(z, (bδaδ)

]η)
.

Thus, there are the following uniform estimates on ∂Ωδint(η):

h(u) = HF (u) = O

(
δη

(distΩδ(u, (bδaδ))η

)
if dist

Ωδ
(u, (aδbδ)) = δ1−η

and similarly

h(u) = HF (u) = 1−O

(
δη

(distΩδ(u, (aδbδ))η

)
if dist

Ωδ
(u, (bδaδ)) = δ1−η.

Now that we have a polynomial O(δα(η)) convergence of HF to harmonic function hm in the bulk of Ωδ.

It is easy to derive the same for F since

HF =

∫
Im[F 2dz] , hm =

∫
Im[f2dz]

where f is a holomorphic function in Ω and ‖∇F‖ = O(1) in the bulk.

Indeed, suppose that there is a direction where Im[(F 2(z)− f2(z))dz] is large. That is, there is some

ze ∈ Ωδ♢ such that |F 2(ze)− f2(ze)| > Cδα(η)/4. Since ‖∇F‖ = O(1) in the bulk, this difference cannot

jump too much. In particular, it will still be large on the edge containing ze: there is some ϵ ∈ (0, 1)

such that

|F 2(w)− f2(w)| > Cδα/4 for |w − ze| < δα/2+ϵ.

Then as functions HF can be obtained from F by integrating a piecewise constant differential form

directly in C, ∫
Im[(F 2(z)− f2(z))dz] > Cδα/2+ϵ

over a segment of length δα/2+ϵ which is a contradiction. By taking the square root which is 1/2- Hölder
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we get that |F (z)− f(z)| ≤ Cδα/2 uniformly in Ωδint(η).

4.4.5. FK Ising convergence rate for paths

Recall the setup and notation from Section 4.4.2. By Lemma 4.4.8, Proposition 4.4.10, and Proposition

4.4.14, we can apply the framework outlined in Theorem 1.5.2 to conclude that: the interface of the

critical FK-Ising model on δ-isoradial graph converges weakly, as δ → 0, to the chordal SLE16/3 interface.

Theorem 4.4.15. Let Ω be a bounded simply connected domain with two distinct boundary points

(degenerate prime ends) a.b. Let (Ωδ; aδ, bδ) be a discrete domain with two marked boundary points

aδ, bδ that converges to (Ω; a, b) in the Caratheodory sense as δ → 0. Consider the interface γδ in the

critical FK-Ising model with Dobrushin boundary conditions on (Ωδ; aδ, bδ). Let ϕ : Ωδ → H ∪ {∞} be

a conformal map onto the upper half plane H such that ϕ((ab)) = (0,∞), ϕ((ba)) = (−∞, 0), ϕ(a) = 0,

ϕ(b) = ∞. Note that ϕ is unique only up to positive rescaling. Let γϕ be the path ϕ ◦ γδ parameterized

by capacity from ∞ in H and γ̃ be the SLE16/3 path in H. Let d∗(·, ·) be the metric on H∪ {∞} defined

above.

For any T > 0, there is some δ0(T ) < ∞ such that if 0 < δ < δ0 then there is a coupling of γϕ and

γ̃ such that

P
{

sup
0≤t≤T

d∗(γ
ϕ(t), γ̃(t)) > δu

}
< δu

for some u ∈ (0, 1).

Moreover, if Ω is an α-Hölder domain, then under the same coupling the SLE curve in the image is

polynomially close to the original discrete curve:

P

{
sup
t∈[0,T ]

d∗
(
γ(t), ϕ−1(γ̃(t))

)
> δv

}
< δv

where v depends only on α and u.



Bibliography

[1] M. Aizenman and A. Burchard. Hölder regularity and dimension bounds for random curves. Duke

Math. J., 99(3):419–453, 1999. 2, 3, 53, 54

[2] Vincent Beffara. Cardy’s formula on the triangular lattice, the easy way. 02 2007. 69

[3] Vincent Beffara. The dimension of the sle curves. Ann. Probab., 36(4):1421–1452, 07 2008. 20

[4] D. Beliaev. Conformal maps and geometry. 2019. 12

[5] Christian Beneš, Fredrik Johansson Viklund, and Michael J. Kozdron. On the rate of convergence

of loop-erased random walk to SLE2. Comm. Math. Phys., 318(2):307–354, 2013. 35, 39, 40, 44,

45, 46, 47, 48

[6] Olivier Bernardi. Percolation on triangulations, and a bijective path to liouville quantum gravity.

Notices of the American Mathematical Society, 66(04):1, Apr 2019. 35

[7] Patrick Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics:

Probability and Statistics. John Wiley & Sons, Inc., New York, second edition, 1999. A Wiley-

Interscience Publication.

[8] I. Binder, L. Chayes, and H. K. Lei. On convergence to SLE6 I: Conformal invariance for certain

models of the bond-triangular type. J. Stat. Phys., 141(2):359–390, 2010. 66, 68

[9] I. Binder, L. Chayes, and H. K. Lei. On convergence to SLE6 II: Discrete approximations and

extraction of Cardy’s formula for general domains. J. Stat. Phys., 141(2):391–408, 2010. 68, 69

[10] I. Binder, L. Chayes, and H. K. Lei. On the rate of convergence for critical crossing probabilities.

Ann. Inst. Henri Poincaré Probab. Stat., 51(2):672–715, 2015. 1, 68, 69, 70

[11] Ilia Binder and Zhiqiang Li. The harmonic explorer on isoradial lattices and it’s convergence to

SLE4. Privately communicated by authors. 76, 77

91



Bibliography 92

[12] Ilia Binder and Larissa Richards. Convergence rates of random discrete model curves approaching

SLE curves in the scaling limit. Preprint, 2020.

[13] Federico Camia and Charles M. Newman. Critical percolation exploration path and SLE6: a proof

of convergence. Probab. Theory Related Fields, 139(3-4):473–519, 2007.

[14] L. Chayes and H. Lei. Cardy’s formula for certain models of the bond-triangular type. Reviews in

Mathematical Physics, 19, 01 2006. 63, 64, 65, 67, 69

[15] L. CHAYES and H. K. LEI. Cardy’s formula for certain models of the bond-triangular type. Reviews

in Mathematical Physics, 19(05):511–565, Jun 2007.

[16] Dmitry Chelkak. Robust discrete complex analysis: a toolbox. Ann. Probab., 44(1):628–683, 2016.

[17] Dmitry Chelkak. Robust discrete complex analysis: A toolbox. The Annals of Probability, 44(1):628–

683, Jan 2016.

[18] Dmitry Chelkak. Ising model and s-embeddings of planar graphs, 2020. 71, 72, 88

[19] Dmitry Chelkak, Hugo Duminil-Copin, Clément Hongler, Antti Kemppainen, and Stanislav

Smirnov. Convergence of Ising interfaces to Schramm’s SLE curves. C. R. Math. Acad. Sci. Paris,

352(2):157–161, 2014. 1

[20] Dmitry Chelkak and Stanislav Smirnov. Discrete complex analysis on isoradial graphs. Advances

in Mathematics, 228(3):1590–1630, Oct 2011. 78, 82

[21] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2d ising model and conformal invariance

of fermionic observables. Inventiones mathematicae, 189(3):515–580, Jan 2012. 82, 83, 84, 86

[22] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance

of fermionic observables. Invent. Math., 189(3):515–580, 2012.

[23] M. Csörgő and P. Révész. Strong Approximations in Probability and Statistics. 1981. 44

[24] Julien Dubédat. SLE and Triangles. Electronic Communications in Probability, 8(none):28 – 42,

2003. 33

[25] Richard M. Dudley. Real analysis and probability. Wadsworth & Brooks/Cole Advanced Books &

Software, Pacific Grove, CA, 1989. 44



Bibliography 93

[26] Hugo Duminil-Copin. Parafermionic observables and their applications to planar statistical physics

models, volume 25 of Ensaios Matemáticos [Mathematical Surveys]. Sociedade Brasileira de

Matemática, Rio de Janeiro, 2013.

[27] Hugo Duminil-Copin, Vladas Sidoravicius, and Vincent Tassion. Continuity of the phase transition

for planar random-cluster and potts models with 1 ≤ q ≤ 4. Communications in Mathematical

Physics, 349(1):47–107, Oct 2016. 86

[28] Bertrand Duplantier, Jason Miller, and Scott Sheffield. Liouville quantum gravity as a mating of

trees, 2014. 34

[29] Bertrand Duplantier, Jason Miller, and Scott Sheffield. Liouville quantum gravity as a mating of

trees. 09 2014.

[30] Rick Durrett. Probability—theory and examples, volume 49 of Cambridge Series in Statistical

and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2019. Fifth edition of [

MR1068527].

[31] Jean-François Le Gall and Grégory Miermont. Scaling limits of random trees and planar maps,

2011.

[32] Christophe Garban, Steffen Rohde, and Oded Schramm. Continuity of the SLE trace in simply

connected domains. Israel J. Math., 187:23–36, 2012.

[33] John B. Garnett and Donald E. Marshall. Jordan domains. In Harmonic Measure, New Mathe-

matical Monographs, page 1–36. Cambridge University Press, 2005.

[34] Geoffrey Grimmett. Probability on graphs, volume 1 of Institute of Mathematical Statistics Textbooks.

Cambridge University Press, Cambridge, 2010. Random processes on graphs and lattices.

[35] Ewain Gwynne, Nina Holden, and Xin Sun. Joint scaling limit of site percolation on random

triangulations in the metric and peanosphere sense, 2019. 34

[36] Ewain Gwynne, Adrien Kassel, Jason Miller, and David B. Wilson. Active spanning trees with bend-

ing energy on planar maps and sle-decorated liouville quantum gravity for κ > 8. Communications

in Mathematical Physics, 358(3):1065–1115, Feb 2018. 34

[37] Ewain Gwynne, Cheng Mao, and Xin Sun. Scaling limits for the critical fortuin–kasteleyn model

on a random planar map i: Cone times. Annales de l’Institut Henri Poincaré, Probabilités et

Statistiques, 55(1):1–60, Feb 2019. 34



Bibliography 94

[38] Ewain Gwynne and Jason Miller. Convergence of the self-avoiding walk on random quadrangulations

to sle8/3 on
√
8/3-liouville quantum gravity, 2016. 34

[39] Ewain Gwynne and Jason Miller. Convergence of percolation on uniform quadrangulations with

boundary to sle6 on
√
8/3-liouville quantum gravity, 2017. 34, 35

[40] Ewain Gwynne and Xin Sun. Scaling limits for the critical fortuin-kastelyn model on a random

planar map iii: finite volume case. 10 2015. 34

[41] Ewain Gwynne and Xin Sun. Scaling limits for the critical fortuin-kasteleyn model on a random

planar map ii: local estimates and empty reduced word exponent. Electronic Journal of Probability,

22(0), 2017.

[42] Erich Haeusler. An exact rate of convergence in the functional central limit theorem for special

martingale difference arrays. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete,

65:523 – 534, 1984. 44

[43] Nina Holden, Xinyi Li, and Xin Sun. Natural parametrization of percolation interface and pivotal

points. 04 2018. 34

[44] Nina Holden and Xin Sun. Convergence of uniform triangulations under the cardy embedding, 2019.

35

[45] Fredrik Johansson Viklund. Convergence rates for loop-erased random walk and other Loewner

curves. Ann. Probab., 43(1):119–165, 2015. 2, 3, 15, 18, 26, 27, 28, 29, 30, 36, 37, 38, 51, 60

[46] Antti Kemppainen and Stanislav Smirnov. Random curves, scaling limits and Loewner evolutions.

Ann. Probab., 45(2):698–779, 2017. 2, 3, 4, 24, 25, 26, 30, 33, 55, 67, 86

[47] Richard Kenyon, Jason Miller, Scott Sheffield, and David B. Wilson. Bipolar orientations on planar

maps and SLE12. Ann. Probab., 47(3):1240–1269, 05 2019. 34

[48] Mikhail Khristoforov. Low dimensional defects in percolation model. PhD thesis, 04/13 2018. ID:

unige:111513. 63

[49] G. Kirchhoff. Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen

vertheilung galvanischer ströme geführt wird. Annalen der Physik, 148:497–508. 10

[50] Michael J. Kozdron, Larissa M. Richards, and Daniel W. Stroock. Determinants, their applications

to markov processes, and a random walk proof of kirchhoff’s matrix tree theorem, 2013. 11



Bibliography 95

[51] G. Lawler and V. Limic. Random walk: A modern introduction. 2010. 10

[52] Gregory Lawler. Multifractal Analysis of the Reverse Flow for the Schramm-Loewner Evolution,

volume 61, pages 73–107. 01 2009. 20

[53] Gregory Lawler, Oded Schramm, and Wendelin Werner. Conformal restriction: The chordal case.

Journal of the American Mathematical Society, 16(4):917–955, Jun 2003. 20

[54] Gregory F. Lawler. Conformally invariant processes in the plane, volume 114 of Mathematical

Surveys and Monographs. American Mathematical Society, Providence, RI, 2005. 12, 14, 17, 20,

21, 22

[55] Gregory F. Lawler and Mohammad A. Rezaei. Minkowski content and natural parameterization for

the schramm–loewner evolution. Ann. Probab., 43(3):1082–1120, 05 2015. 34

[56] Gregory F. Lawler, Oded Schramm, and Wendelin Werner. Values of brownian intersection expo-

nents, i: Half-plane exponents. Acta Mathematica, 187(2):237–273, 2001. 9, 14, 20

[57] Gregory F. Lawler, Oded Schramm, and Wendelin Werner. Conformal invariance of planar loop-

erased random walks and uniform spanning trees [mr2044671]. In Selected works of Oded Schramm.

Volume 1, 2, Sel. Works Probab. Stat., pages 931–987. Springer, New York, 2011. 1, 10, 14, 16, 26,

40

[58] Gregory F. Lawler and Scott Sheffield. A natural parametrization for the schramm–loewner evolu-

tion. Ann. Probab., 39(5):1896–1937, 09 2011. 34

[59] Gregory F. Lawler and Fredrik Viklund. Convergence of loop-erased random walk in the natural

parametrization, 2016. 1

[60] Gregory F. Lawler and Fredrik Viklund. Convergence of loop-erased random walk in the natural

parametrization, 2016. 34

[61] Gregory F. Lawler and Fredrik Viklund. Convergence of radial loop-erased random walk in the

natural parametrization, 2017. 34

[62] Gregory F. Lawler and Wang Zhou. Sle curves and natural parametrization. Ann. Probab.,

41(3A):1556–1584, 05 2013. 34

[63] Yiting Li, Xin Sun, and Samuel S. Watson. Schnyder woods, sle(16), and liouville quantum gravity,

2017. 34



Bibliography 96

[64] Joan Lind, Donald E. Marshall, and Steffen Rohde. Collisions and spirals of loewner traces. Duke

Mathematical Journal, 154(3):527–573, Sep 2010. 15, 22

[65] J.R. Lind. A sharp condition for the loewner equation to generate slits. Annales Academiae

Scientiarum Fennicae Mathematica, 30:143–158, 01 2005. 15

[66] Donald Marshall and Steffen Rohde. The loewner differential equation and slit mappings. Journal

of the American Mathematical Society, 18, 07 2005. 15

[67] Jason Miller and Scott Sheffield. Liouville quantum gravity and the brownian map iii: the conformal

structure is determined, 2016. 34

[68] Robin Pemantle. Choosing a spanning tree for the integer lattice uniformly. Ann. Probab.,

19(4):1559–1574, 10 1991. 9

[69] Ch. Pommerenke. Boundary behaviour of conformal maps, volume 299 of Grundlehren der Math-

ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag,

Berlin, 1992. 4, 5, 22, 53

[70] Ch. Pommerenke. Conformal maps at the boundary. In Handbook of complex analysis: geometric

function theory, Vol. 1, pages 37–74. North-Holland, Amsterdam, 2002. 5, 14

[71] Steffen Rohde and Oded Schramm. Basic properties of SLE [mr2153402]. In Selected works of Oded

Schramm. Volume 1, 2, Sel. Works Probab. Stat., pages 989–1030. Springer, New York, 2011. 15,

16, 19

[72] Oded Schramm. Scaling limits of loop-erased random walks and uniform spanning trees [mr1776084].

In Selected works of Oded Schramm. Volume 1, 2, Sel. Works Probab. Stat., pages 791–858. Springer,

New York, 2011. 1, 9, 15, 18

[73] Oded Schramm and Scott Sheffield. Harmonic explorer and its convergence to SLE4. Ann. Probab.,

33(6):2127–2148, 2005. 1

[74] Oded Schramm and Scott Sheffield. Harmonic explorer and its convergence to sle 4. Ann. Probab.,

33(6):2127–2148, 11 2005. 78, 79, 80

[75] Oded Schramm and Scott Sheffield. Contour lines of the two-dimensional discrete Gaussian free

field. Acta Math., 202(1):21–137, 2009. 1

[76] Scott Sheffield and Nike Sun. Strong path convergence from Loewner driving function convergence.

Ann. Probab., 40(2):578–610, 2012.



Bibliography 97

[77] Stanislav Smirnov. Critical percolation in the plane: conformal invariance, cardy’s formula, scaling

limits. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, 333(3):239 – 244,

2001. 63, 68, 69

[78] Stanislav Smirnov. Critical percolation and conformal invariance. In XIVth International Congress

on Mathematical Physics, pages 99–112. World Sci. Publ., Hackensack, NJ, 2005. 1, 23

[79] Stanislav Smirnov. Towards conformal invariance of 2D lattice models. In International Congress

of Mathematicians. Vol. II, pages 1421–1451. Eur. Math. Soc., Zürich, 2006. 18

[80] Stanislav Smirnov. Conformal invariance in random cluster models. I. Holomorphic fermions in the

Ising model. Ann. of Math. (2), 172(2):1435–1467, 2010.

[81] S. E. Warschawski. On the degree of variation in conformal mapping of variable regions. Trans.

Amer. Math. Soc., 69:335–356, 1950. 59

[82] David Bruce Wilson. Generating random spanning trees more quickly than the cover time. In

Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96,

page 296–303, New York, NY, USA, 1996. Association for Computing Machinery. 10


	Introduction and Background
	The Space of Curves
	Introduction to the SLE-Quest via Loop-Erased Random Walk
	Uniform Spanning Tree

	Loewner Evolution and SLE
	Loewner Evolution
	Schramm Loewner Evolution
	Carathéodory convergence

	Approaches to Proving Convergence to SLE and Main Results in the Literature
	Main Theorem
	Outline of Thesis


	Convergence of Driving Term
	Key Estimate
	Proof of Theorem 2.0.1

	From Convergence of Driving Terms to Convergence of Paths
	Main Estimate for the Tip Structure Modulus
	Results from Aizenman and Burchard
	Proof of Main Estimate for Tip Structure Modulus
	Convergence of Discrete Domains
	Proof of Main Theorem

	Applications
	Percolation
	Approximate harmonicity
	Harmonic Explorer
	Setup and main results
	Definitions and preliminaries
	Harmonic explorer satisfies the KS condition
	Harmonic explorer observable convergence
	Harmonic explorer convergence rate for paths

	Ising Model
	Setup and main results
	Review of the Model
	FK Ising satisfies KS Condition
	FK Ising observable convergence
	FK Ising convergence rate for paths


	Bibliography

