0D-2D Quantum Dot: Metal Dichalcogenide Nanocomposite Photocatalyst Achieves Efficient Hydrogen Generation

Abstract

Hydrogen generation via photocatalysis-driven water splitting provides a convenient approach to turn solar energy into chemical fuel. The development of photocatalysis system that can effectively harvest visible light for hydrogen generation is an essential task in order to utilize this technology. Herein, a kind of cadmium free Zn-Ag-In-S (ZAIS) colloidal quantum dots (CQDs) that shows remarkably photocatalytic efficiency in the visible region is developed. More importantly, a nanocomposite based on the combination of 0D ZAIS CQDs and 2D MoS2 nanosheet is developed. This can leverage the strong light harvesting capability of CQDs and catalytic performance of MoS2 simultaneously. As a result, an excellent external quantum efficiency of 40.8% at 400 nm is achieved for CQD-based hydrogen generation catalyst. This work presents a new platform for the development of high-efficiency photocatalyst based on 0D-2D nanocomposite.

Description

Keywords

photocatalysis, hydrogen generation, quantum dots, MoS2nanosheets, 0D-2D nanocomposites

Citation

X.-Y. Liu, H. Chen, R. L. Wang, Y. Q. Shang, Q. Zhang, W. Li, G. Z. Zhang, J. Su, C. T. Dinh, F. P. G. de Arquer, J. Li, J. Jiang, Q. X. Mi, R. Si, X. Li, Y. Sun, Y.-T. Long, H. Tian, E. H. Sargent, Z. J. Ning, Adv. Mater. 2017, 29, 1605646.

DOI

10.1002/adma.201605646

ISSN

09359648

Creative Commons

Creative Commons URI

Collections

Items in TSpace are protected by copyright, with all rights reserved, unless otherwise indicated.