4D-printed hybrids with localized shape memory behaviour: Implementation in a functionally graded structure
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
4D-printed materials are an emerging field of research because the physical structure of these novel materials respond to environmental changes. 3D printing techniques have been employed to print a base material with shape memory properties. Geometrical deformations can be observed once an external stimulus triggers the shape memory effect (SME) integrated into the material. The plasticizing effect is a well-known phenomenon where the microscopic polymer chain movements have been altered and reflected in different shape memory behaviour. It has been suggested that a 4D material with localized actuation behaviour can be fabricated by utilizing functionally graded layers made from different degrees of plasticizing. This study demonstrated that a novel 4D material can be fabricated from material extraction continuous printing technique with different loadings of poly(ethylene glycol) (PEG) plasticize, achieving localized thermal recovery. The results indicate that a plasticized functional layer is an effective technique for creating next generation 4D materials.
Description
Keywords
Citation
DOI
ISSN
Creative Commons
Creative Commons URI
Items in TSpace are protected by copyright, with all rights reserved, unless otherwise indicated.