Site-selective protonation enables efficient carbon monoxide electroreduction to acetate

Abstract

Electrosynthesis of acetate from CO offers the prospect of a low-carbon-intensity route to this valuable chemical--but only once sufficient selectivity, reaction rate and stability are realized. It is a high priority to achieve the protonation of the relevant intermediates in a controlled fashion, and to achieve this while suppressing the competing hydrogen evolution reaction (HER) and while steering multicarbon (C2+) products to a single valuable product--an example of which is acetate. Here we report interface engineering to achieve solid/liquid/gas triple-phase interface regulation, and we find that it leads to site-selective protonation of intermediates and the preferential stabilization of the ketene intermediates: this, we find, leads to improved selectivity and energy efficiency toward acetate. Once we further tune the catalyst composition and also optimize for interfacial water management, we achieve a cadmium-copper catalyst that shows an acetate Faradaic efficiency (FE) of 75% with ultralow HER (<0.2% H2 FE) at 150 mA cm-2. We develop a high-pressure membrane electrode assembly system to increase CO coverage by controlling gas reactant distribution and achieve 86% acetate FE simultaneous with an acetate full-cell energy efficiency (EE) of 32%, the highest energy efficiency reported in direct acetate electrosynthesis.

Description

Keywords

electrocatalysis

Citation

Wang, X., Chen, Y., Li, F., Miao, R. K., Huang, J. E., Zhao, Z., ... & Sargent, E. H. (2024). Site-selective protonation enables efficient carbon monoxide electroreduction to acetate. Nature Communications, 15(1), 616.

DOI

10.1038/s41467-024-44727-z

ISSN

2041-1723

Creative Commons

Attribution 4.0 International

Items in TSpace are protected by copyright, with all rights reserved, unless otherwise indicated.